library(haven)
library(ltm)
library(dplyr)
df <- haven::read_sav("/students/aamenshikova/Kaluga/IRT Summer/base_ko.sav")

School Connectedness

s_con <- dplyr::select(df,sc1,sc2,sc3,sc4,sc5,sc6,sc7,sc8,sc9)
mdl1 <- grm(s_con, constrained = FALSE, na.action = na.exclude)
mdl1
## 
## Call:
## grm(data = s_con, constrained = FALSE, na.action = na.exclude)
## 
## Coefficients:
##      Extrmt1  Extrmt2  Extrmt3  Dscrmn
## sc1   -1.966   -1.058    0.343   3.147
## sc2   -2.274   -1.530   -0.150   2.492
## sc3   -2.313   -1.211    0.372   1.848
## sc4   -1.509   -0.239    1.180   1.958
## sc5   -2.957   -1.657    0.397   1.548
## sc6   -2.541   -1.088    0.641   1.287
## sc7   -2.923   -1.675   -0.237   1.231
## sc8   -3.668   -2.062    0.036   1.043
## sc9   -2.604   -1.122    0.957   1.624
## 
## Log.Lik: -245895.8

Engagement

eng <- dplyr::select(df,e1,e2,e3,e4,e5,e6,e7,e8)
mdl2 <- grm(eng, constrained = FALSE, na.action = na.exclude)
mdl2
## 
## Call:
## grm(data = eng, constrained = FALSE, na.action = na.exclude)
## 
## Coefficients:
##     Extrmt1  Extrmt2  Extrmt3  Dscrmn
## e1   -2.719   -1.560    0.403   1.603
## e2   -5.481   -2.858    1.855   0.467
## e3   -3.219   -0.854    1.436   0.824
## e4   -3.509   -1.990    0.315   0.856
## e5   -3.399   -1.923    0.153   0.955
## e6   -2.403   -1.456   -0.062   1.953
## e7   -2.041   -0.967    0.440   1.751
## e8   -2.120   -1.513   -0.294   2.708
## 
## Log.Lik: -235989.8

Aggressiveness

agr <- dplyr::select(df,agres1,agres2,agres3,agres4)
mdl3 <- ltm::grm(agr, constrained = FALSE,start.val = "random", na.action = na.exclude)

Teacher Effectiveness

te <- dplyr::select(df,te1,te2,te3)
mdl4 <- ltm::grm(te, constrained = FALSE, na.action = na.exclude)
mdl4
## 
## Call:
## ltm::grm(data = te, constrained = FALSE, na.action = na.exclude)
## 
## Coefficients:
##      Extrmt1  Extrmt2  Extrmt3  Dscrmn
## te1   -2.193   -1.261   -0.004   2.881
## te2   -2.406   -1.579   -0.114   3.070
## te3   -2.314   -1.281    0.147   2.661
## 
## Log.Lik: -72764.35

Teacher Relations

tr <- dplyr::select(df,tr1,tr2,tr3,tr4)
mdl5 <- ltm::grm(tr, constrained = FALSE, na.action = na.exclude)
mdl5
## 
## Call:
## ltm::grm(data = tr, constrained = FALSE, na.action = na.exclude)
## 
## Coefficients:
##      Extrmt1  Extrmt2  Extrmt3  Dscrmn
## tr1   -2.505   -1.417    0.102   1.872
## tr2   -2.868   -1.648   -0.074   1.653
## tr3   -2.074   -1.187    0.180   3.864
## tr4   -2.086   -1.178    0.182   3.352
## 
## Log.Lik: -100006.1

Self-Esteem Math

sem <- dplyr::select(df,seM1,seM2,seM3,seM4)
mdl6 <- ltm::grm(sem, constrained = FALSE, na.action = na.exclude,start.val = "random")
mdl6
## 
## Call:
## ltm::grm(data = sem, constrained = FALSE, start.val = "random", 
##     na.action = na.exclude)
## 
## Coefficients:
##       Extrmt1  Extrmt2  Extrmt3  Dscrmn
## seM1    1.464    0.259   -0.900  -2.917
## seM2    1.550    0.475   -0.749  -2.621
## seM3    2.055    0.804   -0.581  -1.128
## seM4    2.110    1.028   -0.322  -1.918
## 
## Log.Lik: -126972.3

Self-Esteem Human

seh <- dplyr::select(df,seH1,seH2,seH3,seH4)
mdl7 <- ltm::grm(seh, constrained = FALSE,start.val = "random", na.action = na.exclude)
mdl7
## 
## Call:
## ltm::grm(data = seh, constrained = FALSE, start.val = "random", 
##     na.action = na.exclude)
## 
## Coefficients:
##       Extrmt1  Extrmt2  Extrmt3  Dscrmn
## seH1   -2.163   -0.778    0.787   2.337
## seH2   -3.547   -2.042   -0.202   1.300
## seH3   -2.567   -1.047    0.769   0.965
## seH4   -2.130   -0.625    1.066   1.708
## 
## Log.Lik: -122771.9

Bulling

bul <- dplyr::select(df,bul1,bul2,bul3,bul4, bul5, bul6, bul7, bul8, bul9, bul10)
mdl8 <- ltm::grm(bul, constrained = FALSE, na.action = na.exclude)
mdl8
## 
## Call:
## ltm::grm(data = bul, constrained = FALSE, na.action = na.exclude)
## 
## Coefficients:
##        Extrmt1  Extrmt2  Extrmt3  Dscrmn
## bul1     0.804    1.745    2.383   3.260
## bul2     0.095    1.401    2.211   2.671
## bul3     0.265    1.549    2.468   1.835
## bul4     1.199    2.828    3.808   1.318
## bul5     1.490    2.547    3.166   2.164
## bul6     0.368    1.736    2.573   2.300
## bul7     0.100    1.625    2.606   1.703
## bul8     0.591    2.705    3.768   1.120
## bul9     1.045    2.257    2.996   1.840
## bul10    0.502    1.738    2.526   2.240
## 
## Log.Lik: -192801.2

Cyberbulling

cyb <- dplyr::select(df,cyb1,cyb2,cyb3)
mdl9 <- ltm::grm(cyb, constrained = FALSE, na.action = na.exclude)
mdl9
## 
## Call:
## ltm::grm(data = cyb, constrained = FALSE, na.action = na.exclude)
## 
## Coefficients:
##       Extrmt1  Extrmt2  Extrmt3  Extrmt4  Dscrmn
## cyb1    0.261    1.131    1.931    2.820   2.208
## cyb2    1.029    1.794    2.466    3.132   2.415
## cyb3    0.604    1.312    1.942    2.707   3.480
## 
## Log.Lik: -65765.74

School Conditions?

sccond <- dplyr::select(df,sc_cond1,sc_cond2,sc_cond3,sc_cond4,sc_cond5,sc_cond6)
mdl10 <- ltm::grm(sccond, constrained = FALSE, na.action = na.exclude)
mdl10
## 
## Call:
## ltm::grm(data = sccond, constrained = FALSE, na.action = na.exclude)
## 
## Coefficients:
##           Extrmt1  Extrmt2  Extrmt3  Dscrmn
## sc_cond1   -1.746   -0.354    1.246   1.243
## sc_cond2   -1.217    0.058    1.358   1.943
## sc_cond3   -0.959    0.720    2.007   2.031
## sc_cond4   -0.699    0.866    2.042   2.026
## sc_cond5   -1.166    0.121    1.343   2.666
## sc_cond6   -0.710    1.449    3.376   1.116
## 
## Log.Lik: -185952.6

Relationship

relat <- dplyr::select(df,rel1,rel2,rel3,rel4)
mdl11 <- ltm::grm(relat, constrained = FALSE, na.action = na.exclude)
mdl11
## 
## Call:
## ltm::grm(data = relat, constrained = FALSE, na.action = na.exclude)
## 
## Coefficients:
##       Extrmt1  Extrmt2  Extrmt3  Dscrmn
## rel1   -2.757   -1.866   -0.393   1.897
## rel2   -2.498   -1.270    0.677   1.834
## rel3   -2.194   -1.223   -0.040   2.234
## rel4   -2.939   -1.275    0.621   1.041
## 
## Log.Lik: -112301.5