Task 1

Scoring Data

mydata = read.csv(file="data/Scoring.csv")
head(mydata)

Scoring ERD Diagram

Analysis: Since the columns Marital, Records, Home, Status, and Job in the Scoring Dataset have specific values in them I created a separte dimension for each of them. Senority, Time, Age, Expenses, Income, Assests, Debt, Amount, Price, Finrat, and Savings are all number based so that is why they are in the fact table.


Task 2

Scoring Data

mydata = read.csv(file="data/Scoring.csv")
head(mydata)

Extracting Expenses.

#Extracting the Expenses Column
expenses = mydata$Expenses 
#Calling the Expenses Column
expenses
   [1]  73  48  90  63  46  75  75  35  90  90  60  60  75  75  35
  [16]  75  35  65  45  35  46  45 105  74  45  60  75  75  75  45
  [31]  45  75  75  35  45  45  75  70  45  44  75  35  45  75  35
  [46]  35  75  48  60  60  75 105  75  60  85  35  45  60  90  70
  [61]  90  35  75  75  75  75  60  45  93  60  60  45  75  75  86
  [76]  90  45  70  45  60  60  60  35  75  35  47  60  40  60  35
  [91]  35 101  95 140  75  45  35 120  89  45  73  75  78  35  75
 [106]  76  90  45  35  79  45  90  35  60  75  35  75  45  35  75
 [121]  57  75  66 114  45  35  75  35  90  75  45  75  60  65  75
 [136]  60  45  60  45  47  60  90  75 119  35 105  60  35  45  60
 [151]  35  45  60  35  75  78  35  45  75  90  75  35  60  57  60
 [166]  45  75  42  75  45  77  75  74  75  35  35  60  75  45  45
 [181] 113  75  75  75  75  75  60  78  46  45 120  75  90  45  60
 [196]  75  87 126  45  35  90  45  75  75  60  45  35  75 105  75
 [211]  75  35  35  45  45  60  60  45  90 105  60  60  60  35  35
 [226]  75  60  45  35  35 100  56  45  57  45  62  45  45  90  90
 [241]  90  60  35  45  35  35  45  45  45  45  73  94 105  60  60
 [256]  77  60  88  45  93  60 105  60  75  35  45  75  60  60  60
 [271]  60  44  60  35  35  75  56  35  45  75  35  60  60  60  75
 [286]  60  45  75  60  75  60  90  73  60  90  45  45  45  45  35
 [301]  35  75  90  59  87  35  60  90  85  75  60  60  96  45  45
 [316]  45  45  45  87  60  35  90  35  71  75  45  75  60  75  60
 [331]  75  90  35  45  75  90  60  45  60 173  60  60  60  60  90
 [346]  60 110  45  70  60  75  60  35  45  35  75  75  45  45  75
 [361]  35  75  35  90  60 113  60  75  76  45  90  45  75  35  35
 [376]  90  72  60  49  58  66  35  75  75  60  60  35  35  75  68
 [391]  90  60  75  60  35  45  75  70  60  60  75  35  49  45  75
 [406]  45  45  60  66  45  45  63  45  67  84  90  35  35  75  75
 [421]  60  82  86  35  35  60  71  60  80  45  54  51  60  75  86
 [436]  60  75  45  95  45  60  35  45  55  45  85  63  35  75  45
 [451]  45  50  60  45  60  60  45  45  75  35  35  45  75  75  49
 [466]  60  60  60  75  60  90  45  75  60  58  35  45 107  45  54
 [481]  35  90  75  60  60  54  45  43  45  60  60  60  75  35  62
 [496]  35  35  35  45  75  35  66  35  35  90  75  68  90  60  45
 [511]  45  75  52  45  68  77  45  45  46  45  35  45  45  75  60
 [526]  60  45  75  60  35  59  75  69  45  45  75  35  60 101  45
 [541]  60  60  75  75  75  75  35  75  60  44  75  75  75  60  64
 [556]  66  45  91  35  45  90  35  35 135  60  75  90  45  45  45
 [571]  45  88  45  45  75  75  60 120  93  35  90  60  45  75  75
 [586]  35  35 105  90  45  75  75  90  60  75  76  45  35  90  35
 [601]  84  60 105  75  60  75 103  90  35  56  75 105  45  35  90
 [616]  90  45  60  69  77  75  90  45  55  60  60  74  56  60  60
 [631]  82  60  75  35  48  45  60  60  75  69  45  75  75  74  45
 [646]  45  60  59  35  45  60  45  39  60  35  60  91  75  44  90
 [661]  75  35  45  60  45  35  63  75  56  75  85  60  90  60  90
 [676]  45  58  90  60  52  60  90  75  35  52  87  35  85  35 102
 [691] 130  75  75 105  75  35  75 107  85  40  45  52  65  85  60
 [706]  35  60  35  60  60  35  35  90  45  35  75  45  35  91  60
 [721]  75  45  90  35  45  90  45  60  56  35  75  45  75  35  60
 [736]  35  75  73  60  75  68  60  35  35  60  66  35  35  75  60
 [751]  45  75  60  45  60  69  60  60  74  45  45  60  35  60  45
 [766]  90  75  90 118  75  60  60  75  35  45  45  90  60  45  68
 [781]  75  60 135  60  35  75  45  60  90  35  35  78  60  35  43
 [796]  35  75  35  45  45  75  35  90  61 135  92  35 102  60  84
 [811]  90  75  35  45  60  60 105  45  60  90  35  45 105  75  35
 [826]  64  90  45  75  60  75  35  90  70  45  60  60  75  85  53
 [841]  90  45 105  60  90  35  35  90  35  35  62  35  75  75  45
 [856]  35  45  75  45  90  45  60  60  75  45  60  90  90  45 100
 [871]  45  75  75  97  90  60  45  90  35  75  72  70  60  35 105
 [886]  60  75  35  55  35  75  45  58  74  60  45  60  35  51  45
 [901]  35  90  35  60  60 108  56  90  78  58  74  75  60  60  88
 [916]  75  35  75  35  45  35  45  35  90  35  60  60  45  77  45
 [931]  45  82  75  35  45  75  75  45  60  45  35  75  60  42  78
 [946]  35  35  45  75  60  59  75 102  35  35  75  35  75  75  93
 [961]  45  88  35  69  45  75  90  75  35  57  35 103  90  35  35
 [976]  60  35  45  35  97  45  35  75  45  60  35  60  75  75  45
 [991]  60  35  60  60 113  60  45  35 124  75
 [ reached getOption("max.print") -- omitted 3446 entries ]

Extracting Income

#Extracting the Income Column
income = mydata$Income 
#Calling the Income Column
income
   [1] 129 131 200 182 107 214 125  80 107  80 125 121 199 170  50
  [16] 131 330 200 130 137 107 324 112 140 143 130 180 251  85 150
  [31] 122 198 150 170 119 208 115  99 120  90 137 230 142  71 120
  [46] 233 289 128 150 145  90 301 200 150 100 100 100 155 715 245
  [61] 150  70 190 152 126 181 185 170 176 238 115 200 411  93 108
  [76] 500  45 250 100  70 150  70 263 200  78 120 125  50 146  70
  [91] 105 413 500 350 200 138  80 208 137  58 130 123 180 140 315
 [106] 164 325 135 109 185 217 300  77 253 101 200 124 143 250 135
 [121] 115 160 214 390 500  95 200  85 214 140  60 180 300 200 242
 [136] 155 100 105 166 120 115 350 214 442 101 122 250  90 160 300
 [151]  83 200  60 205 133 179  69 195 112 210 155 394 149 120 400
 [166] 165 125  74  86 185 165 110 138 300 147 348 112 350 110  75
 [181] 230  85 210 125 149 201 105 183 113 126 300 160 160  89  95
 [196] 125 120 359  80  67 148 298 318 185  39 194  80 147 156 178
 [211] 130  63  88 140 115  83 144 200 172 200 318 177 133 150 208
 [226] 145 157 190  86  90 100 214 100 117 110 168 150 166 283 149
 [241] 250 120 236 277  55 200 235  80 200 140 125 185 190 150 102
 [256] 170 315 130 156 177 341 240 142 333 125 170 220 230 157 340
 [271] 120  91 150  88 120  70 106 162  77 128 189 300  92 380 500
 [286] 130 141 220 146 250 132 150 127  90 166  69 182  77  50 131
 [301]  62  60  86 143 120 283 138  90  99 160 330 100 210 100  97
 [316]  65 227 140 115 150  90 275 176 110 140 500  66 273 145  67
 [331] 232  80 130 200 154 187 135 160 133 230 154  50 189 202  20
 [346]  40  50 125 100 115 160  70 220  99 107 160 150 232 120 225
 [361] 100  80 208 105  98 532 140  90 155 120 159 122 156  90 130
 [376]  45 118 152 135 125 208  81 160 300 135 121 145 165 428 233
 [391] 245 232 200  42  87 200 250 350 105 100 160 132 140 160 148
 [406] 113  97 107 206 275 176 175 223  70  87  42  60 300 144 217
 [421] 180  69 110  50  86 172 109  95 203 114 186 155 195 246 113
 [436] 290 103 125 199 133 210 124  78 200 100  95 183  43 120 198
 [451] 100 150 133 110 202 140 123 275 200 180  55 105 146 100 136
 [466]  90 144 116 128 105 125  68 400 251 225 140  34 320 124  87
 [481] 161  90  92 110  87  93 110  81  98 155 167 190 110  76 170
 [496] 214  70  55  80  81 139 206  74 120 300 224  80 166 110 161
 [511]  80 150 170 100 225 166 200 110 110 160 204 135 158 290 100
 [526] 115 149 143 150 199 142  80  93 113  92 205 210 256 260 106
 [541] 160 148 220  63 106  81 100 260 243  88 186 105  80 154  35
 [556]  63 297 161 200 140 125  78  57 300  66 202 175 150 158  92
 [571] 123 125 113 167 148 156 123 143 180  92 150  92 139 250 315
 [586] 121 180 129 214  99 110  85 138  93 100 160 215  90 464 167
 [601]  86 125 274 135 300 300 128  90 115 107 300 230 122  43 250
 [616] 190 100 246  85 173 150  86 183 100  94 150 140 107 117 230
 [631] 470 102 210  42 130  90 120 117 160  90  50 100 182 135  67
 [646] 167 137 140  85 324  77 100  42 251 180 400 158 300  90 146
 [661] 255 250  50 150 232 190 178 254 110  70 100 137 258 242  85
 [676] 179 125 500 140  70 150 245 193 110  70 115  85 400 130 120
 [691] 250 108 225 300 250 150 156 319 100  51 145 168  54 100 115
 [706] 209 180  63 130 170 157  79  64  99  35 150  65 100 160 215
 [721] 112 126 150 136 123  80  72 110 111  60 184 104 290 173 125
 [736]  60 160 126 148 170 230 166  67 190  80  60  91  96 180 130
 [751]  67 100 830 125  30 237 152  95 139 145 300 135  80 100 275
 [766] 250 125 100 130 131 350 538 276 107 105 156 110 260  34  81
 [781]  76  98 174 132 105 300 117 119 140  70 265 180  62 189  75
 [796]  70 188 150 124 113  98 184 195 159 959 170  28 268 155 240
 [811] 500 135 225 100 190 200 154 210 145 210 102  91  75 150 120
 [826]  36 129 125 156  72 166  75 125 250 128 155 459 360 100  80
 [841] 250 105 300 137 110 127  56  75  52 100 170 150 188 175  64
 [856] 110 186 140 200 135 130 200  33  69  90 175 197 125 170 247
 [871] 250 130 207  65 180 250 129 159 116  88 120 100 100 113  80
 [886] 150  52  71  99  63 166 108 134 138 110 160 176  70  60 130
 [901] 176 130 108 144 150 183 108 200 180 130 140 141 127 117 130
 [916] 240 425 800  80  95  71 135  47 250 150 118 130 125 171 265
 [931] 100  69 293  87 110  75  40 140 122 161  70  65  66  73 178
 [946] 140  50  78  60 350 140 125 121 155 133 117 125 136  25 176
 [961] 430 125  79  92 176  85 188 300 100 120  60 125 464 176  90
 [976] 200 415 318 163  72 156  49 110 140  92  74 145 104 400  95
 [991] 150 160 177  85 380 107 134  81 191 100
 [ reached getOption("max.print") -- omitted 3446 entries ]

Mean of Expenses & Income

#Using the 'mean' function on checking to calculate the checking average and naming the average 'meanExpenses'
meanExpenses = mean(expenses)
#Calling the average
meanExpenses
[1] 55.60144
#Find the average of the savings column and name the average of the savings meanIncome
meanIncome = mean(income)
#Call mean savings
meanIncome
[1] 140.6298

Standard Deviation Expenses & Income

#Computing the standard deviation of standard deviation
spreadExpenses = sd(expenses)
spreadExpenses
[1] 19.52084
#Find the standard deviation of income
spreadIncome = sd(income)
spreadIncome
[1] 80.1779

SNR Expenses & Income

#Compute the snr of Expenses and name it snr_Expenses
snr_Expenses = meanExpenses/spreadExpenses

#Call snr_Expenses
snr_Expenses

#Find the snr of the Income and name it snr_Income
snr_Income = meanIncome/spreadIncome

#Call snr_Saving
snr_Income

Of the Expenses and Income, which has a higher SNR? Why do you think that is?

Expenses has the higher SNR because the expenses accured by individuals must be smaller than their income to survive. So dividing the by the whole spread gives us a higher value.


Task 3

Watson Analytics

This graph shows the correlation between income and expenses. As shown, you can see that the lower the income, the lower the expenses are because individuals don’t have the money to spend. As income rises, so does expenses.

Fixed assets are especially large in the owner section because they are the ones who own a house, which is one of the largest, if not the largest, fixed asset you can own.

LS0tCnRpdGxlOiAiQnVzaW5lc3MgQW5hbHl0aWNzIExhYiBXb3Jrc2hlZXQgMDEiCmF1dGhvcjogIkthdGllIEtvdXZlbGlzIgpkYXRlOiAiSnVseSAxMiIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0CnN1YnRpdGxlOiBDTUUgR3JvdXAgRm91bmRhdGlvbiBCdXNpbmVzcyBBbmFseXRpY3MgTGFiCi0tLQojIyMgVGFzayAxCgojIyMjIFNjb3JpbmcgRGF0YSAKYGBge3J9Cm15ZGF0YSA9IHJlYWQuY3N2KGZpbGU9ImRhdGEvU2NvcmluZy5jc3YiKQpoZWFkKG15ZGF0YSkKYGBgCgojIyMjIFNjb3JpbmcgRVJEIERpYWdyYW0gCiFbXShpbWdzL2VyZHBsdXMtZGlhZ3JhbXNjb3JpbmcucG5nKQoKQW5hbHlzaXM6IFNpbmNlIHRoZSBjb2x1bW5zIE1hcml0YWwsIFJlY29yZHMsIEhvbWUsIFN0YXR1cywgYW5kIEpvYiBpbiB0aGUgU2NvcmluZyBEYXRhc2V0IGhhdmUgc3BlY2lmaWMgdmFsdWVzIGluIHRoZW0gSSBjcmVhdGVkIGEgc2VwYXJ0ZSBkaW1lbnNpb24gZm9yIGVhY2ggb2YgdGhlbS4gU2Vub3JpdHksIFRpbWUsIEFnZSwgRXhwZW5zZXMsIEluY29tZSwgQXNzZXN0cywgRGVidCwgQW1vdW50LCBQcmljZSwgRmlucmF0LCBhbmQgU2F2aW5ncyBhcmUgYWxsIG51bWJlciBiYXNlZCBzbyB0aGF0IGlzIHdoeSB0aGV5IGFyZSBpbiB0aGUgZmFjdCB0YWJsZS4gCgotLS0tLS0tLS0tLS0tCgojIyMgVGFzayAyCgojIyMjIFNjb3JpbmcgRGF0YSAKYGBge3J9Cm15ZGF0YSA9IHJlYWQuY3N2KGZpbGU9ImRhdGEvU2NvcmluZy5jc3YiKQpoZWFkKG15ZGF0YSkKYGBgCgojIyMjIEV4dHJhY3RpbmcgRXhwZW5zZXMuIAoKYGBge3J9CiNFeHRyYWN0aW5nIHRoZSBFeHBlbnNlcyBDb2x1bW4KZXhwZW5zZXMgPSBteWRhdGEkRXhwZW5zZXMgCgojQ2FsbGluZyB0aGUgRXhwZW5zZXMgQ29sdW1uCmV4cGVuc2VzCmBgYAoKIyMjIyBFeHRyYWN0aW5nIEluY29tZQoKYGBge3J9CiNFeHRyYWN0aW5nIHRoZSBJbmNvbWUgQ29sdW1uCmluY29tZSA9IG15ZGF0YSRJbmNvbWUgCgojQ2FsbGluZyB0aGUgSW5jb21lIENvbHVtbgppbmNvbWUKYGBgCgojIyMjIE1lYW4gb2YgRXhwZW5zZXMgJiBJbmNvbWUKCmBgYHtyfQojVXNpbmcgdGhlICdtZWFuJyBmdW5jdGlvbiBvbiBjaGVja2luZyB0byBjYWxjdWxhdGUgdGhlIGNoZWNraW5nIGF2ZXJhZ2UgYW5kIG5hbWluZyB0aGUgYXZlcmFnZSAnbWVhbkV4cGVuc2VzJwptZWFuRXhwZW5zZXMgPSBtZWFuKGV4cGVuc2VzKQoKI0NhbGxpbmcgdGhlIGF2ZXJhZ2UKbWVhbkV4cGVuc2VzCgojRmluZCB0aGUgYXZlcmFnZSBvZiB0aGUgc2F2aW5ncyBjb2x1bW4gYW5kIG5hbWUgdGhlIGF2ZXJhZ2Ugb2YgdGhlIHNhdmluZ3MgbWVhbkluY29tZQptZWFuSW5jb21lID0gbWVhbihpbmNvbWUpCgojQ2FsbCBtZWFuIHNhdmluZ3MKbWVhbkluY29tZQpgYGAKCiMjIyMgU3RhbmRhcmQgRGV2aWF0aW9uIEV4cGVuc2VzICYgSW5jb21lIAoKYGBge3J9CiNDb21wdXRpbmcgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBzdGFuZGFyZCBkZXZpYXRpb24Kc3ByZWFkRXhwZW5zZXMgPSBzZChleHBlbnNlcykKc3ByZWFkRXhwZW5zZXMKYGBgCgpgYGB7cn0KI0ZpbmQgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBpbmNvbWUKc3ByZWFkSW5jb21lID0gc2QoaW5jb21lKQpzcHJlYWRJbmNvbWUKYGBgCgojIyMjIFNOUiBFeHBlbnNlcyAmIEluY29tZSAKCmBgYHtyfQojQ29tcHV0ZSB0aGUgc25yIG9mIEV4cGVuc2VzIGFuZCBuYW1lIGl0IHNucl9FeHBlbnNlcwpzbnJfRXhwZW5zZXMgPSBtZWFuRXhwZW5zZXMvc3ByZWFkRXhwZW5zZXMKCiNDYWxsIHNucl9FeHBlbnNlcwpzbnJfRXhwZW5zZXMKCiNGaW5kIHRoZSBzbnIgb2YgdGhlIEluY29tZSBhbmQgbmFtZSBpdCBzbnJfSW5jb21lCnNucl9JbmNvbWUgPSBtZWFuSW5jb21lL3NwcmVhZEluY29tZQoKI0NhbGwgc25yX1NhdmluZwpzbnJfSW5jb21lCgpgYGAKCk9mIHRoZSBFeHBlbnNlcyBhbmQgSW5jb21lLCB3aGljaCBoYXMgYSBoaWdoZXIgU05SPyBXaHkgZG8geW91IHRoaW5rIHRoYXQgaXM/CgpFeHBlbnNlcyBoYXMgdGhlIGhpZ2hlciBTTlIgYmVjYXVzZSB0aGUgZXhwZW5zZXMgYWNjdXJlZCBieSBpbmRpdmlkdWFscyBtdXN0IGJlIHNtYWxsZXIgdGhhbiB0aGVpciBpbmNvbWUgdG8gc3Vydml2ZS4gU28gZGl2aWRpbmcgdGhlIGJ5IHRoZSB3aG9sZSBzcHJlYWQgZ2l2ZXMgdXMgYSBoaWdoZXIgdmFsdWUuIAoKLS0tLS0tLS0tLS0tCgojIyMgVGFzayAzCiMjIyMgV2F0c29uIEFuYWx5dGljcyAKIVtdKGltZ3Mvd2F0c29uYW5hbHl0aWNzMS5wbmcpCgpUaGlzIGdyYXBoIHNob3dzIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIGluY29tZSBhbmQgZXhwZW5zZXMuIEFzIHNob3duLCB5b3UgY2FuIHNlZSB0aGF0IHRoZSBsb3dlciB0aGUgaW5jb21lLCB0aGUgbG93ZXIgdGhlIGV4cGVuc2VzIGFyZSBiZWNhdXNlIGluZGl2aWR1YWxzIGRvbid0IGhhdmUgdGhlIG1vbmV5IHRvIHNwZW5kLiBBcyBpbmNvbWUgcmlzZXMsIHNvIGRvZXMgZXhwZW5zZXMuIAoKIVtdKGltZ3Mvd2F0c29uYW5hbHl0aWNzLnBuZykKRml4ZWQgYXNzZXRzIGFyZSBlc3BlY2lhbGx5IGxhcmdlIGluIHRoZSBvd25lciBzZWN0aW9uIGJlY2F1c2UgdGhleSBhcmUgdGhlIG9uZXMgd2hvIG93biBhIGhvdXNlLCB3aGljaCBpcyBvbmUgb2YgdGhlIGxhcmdlc3QsIGlmIG5vdCB0aGUgbGFyZ2VzdCwgZml4ZWQgYXNzZXQgeW91IGNhbiBvd24uIAoKCgoKCgoKCgoKCg==