Star Schema

Star Schema


Task 2

mydata = read.csv(file="data/creditrisk.csv")
head(mydata)
#Extracting the Checking Column
checking = mydata$Checking 
#Calling the Checking Column
checking 
  [1]     0     0     0   638   963  2827     0     0  6509   966     0     0   322     0   396     0   652   708   207   287     0   101     0     0     0   141     0  2484   237     0   335  3565     0 16647     0
 [36]     0     0   940     0     0   218     0 16935   664   150     0   216     0     0     0   265  4256   870   162     0     0     0   461     0     0     0   580     0     0     0     0   758   399   513     0
 [71]     0   565     0     0     0   166  9783   674     0 15328     0   713     0     0     0     0     0   303   900     0  1257     0   273   522     0     0     0     0   514   457  5133     0   644   305  9621
[106]     0     0     0     0     0  6851 13496   509     0 19155     0     0   374     0   828     0   829     0     0   939     0   889   876   893 12760     0     0   959     0     0     0     0   698     0     0
[141]     0 12974     0   317     0     0     0   192     0     0     0     0     0   942     0  3329     0     0     0     0     0     0   339     0     0     0   105     0   216   113   109     0     0  8176     0
[176]   468  7885     0     0     0     0     0     0     0     0     0   734     0     0   172   644     0   617     0   586     0     0     0     0     0   522   585  5588     0   352     0  2715   560   895   305
[211]     0     0     0  8948     0     0     0     0     0   483     0     0     0   663   624     0     0   152     0     0   498     0   156  1336     0     0     0  2641     0     0     0     0     0   887     0
[246]     0     0     0 18408   497     0   946   986  8122     0   778   645     0   682 19812     0     0   859     0     0     0     0     0     0   795     0     0     0     0   852     0     0   425     0     0
[281]     0 11072     0   219  8060     0     0     0     0  1613   757     0     0   977   197     0     0     0     0     0   256   296     0     0     0   298     0  8636     0     0 19766     0     0     0     0
[316]  4089     0   271   949     0   911     0     0     0     0   271     0     0     0     0  4802   177     0     0   996   705     0     0  5960     0   759     0   651   257   955     0  8249     0   956   382
[351]     0   842  3111     0     0  2846   231     0 17366     0   332   242     0   929     0     0     0     0     0     0     0   646   538     0     0     0     0   135  2472     0 10417   211 16630     0   642
[386]     0   296   898   478   315   122     0     0     0   670   444  3880   819     0     0     0     0     0     0     0     0     0   161     0     0   789   765     0     0   983     0     0   798     0   193
[421]   497     0     0     0     0
#Extracting the Savings Column
Savings = mydata$Savings
#Calling the Savings Column
Savings
  [1]   739  1230   389   347  4754     0   229   533   493     0   989  3305   578   821   228   129   732   683     0 12348 17545  3871     0   485 10723   245     0     0   236   485  1708     0   407   895   150
 [36]   490   162   715   323   128     0   109   189   537  6520   138     0   660   724   897   947     0   917   595   789     0   746   140   659   717   667     0   763  1366   552 14643  2665     0   442  8357
 [71]     0   863   322   800   656   922   885  2886   626     0   904   784   806  3281   759   680   104   899  1732   706     0   576   904   194   710  5564   192   637   405   318   698   369     0   492   308
[106]   127   565 12632   116   178   901   650   241   609   131   544 10853     0   409   391   322   583 12242   479   496   466  1583  1533     0  4873     0   717  7876  4449     0   104   897  4033   945   836
[141]   325 19568   803 10980   265   609  1851   199   500   509   270   457   260  3036   643     0  6345   922   909   775   979   948  2790   309   762   970   320   861   262   692   540   470   192 12230   772
[176] 14186  6330 18716   886   750  3870  3273   406   461   340  6490   348   506 14717     0  1571     0   411   544     0   835   823  5180   408   821   385  2223     0   605  7525  3529  1435   887   243  4553
[211]   418   771   463   110 10099 13428   208   552  3105   415  1238   238   127     0   785   718   493   757  9125   364   598   374     0     0   508   956   636     0  1519   922   180   701   296   519   800
[246]   736 11838   364   212   888   999     0   578   136   734   861   855  4486  2017     0   500   859  3305  1218  9016 11587  8944   807   867 16804   347   836   142   169  3613   403   836     0 11481  3285
[281]   164   891     0   841   607   486   108     0   113     0   208   603   343   463     0   299   490  6628   859   750   954   591 13970   857  5857  3326   726   214   207   713  2141   483   127   367   813
[316]     0   102   759     0   503   823   693   973   648   523  7090   596   904   541   154     0     0   337   716   837     0  7710   531   129   941   596   987     0   460     0   798     0   959  1482   883
[351] 12721     0     0   302   538     0   702  2688     0   425   214     0   272   124 17124   612   862   146 14190   396   519     0   344   204   148   435   914     0     0   412 19811   822     0  3369     0
[386]   707   818   177  4071   466   460   991 17653   497  4014   921     0     0   607 15800   369  4973     0   761   471   674   547   524   815     0   989 10406   957   770   950   160   276   137   579  2684
[421]     0     0     0   712   912
#Using the 'mean' function on checking to calculate the checking average and naming the average 'meanChecking'
meanChecking = mean(checking)
#Calling the average
meanChecking
[1] 1048.014
#Find the average of the savings column and name the average of the savings meanSavings
meanSavings = mean(Savings)
#Call mean savings
meanSavings
[1] 1812.562
#Computing the standard deviation of standard deviation
spreadChecking = sd(checking)
#Find the standard deviation of savings
spreadSavings = sd(Savings)
#Compute the snr of Checking and name it snr_Checking
snr_Checking = meanChecking/spreadChecking
#Call snr_Checking
snr_Checking
[1] 0.3330006
#Find the snr of the savings and name it snr_Saving
snr_Savings = meanSavings/spreadSavings
#Call snr_Saving
snr_Savings
[1] 0.5038695

Of the Checking and Savings, which has a higher SNR? Why do you think that is? Savings because in a traditional checking accounts money is moving in and out more often than in a savings account.


Task 3

Watson

Watson

LS0tDQp0aXRsZTogIkJ1c2luZXNzIEFuYWx5dGljcyBMYWIgV29ya3NoZWV0IDAxIg0KYXV0aG9yOiAiTWFyayBHcnVobGtlIg0KZGF0ZTogIlN1bW1lciAyMDE3Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQpzdWJ0aXRsZTogQ01FIEdyb3VwIEZvdW5kYXRpb24gQnVzaW5lc3MgQW5hbHl0aWNzIExhYg0KLS0tDQoNCiFbU3RhciBTY2hlbWFdKGltZ3Mvcmlzay1kaWFncmFtLnBuZykNCg0KLS0tLS0tLS0tLS0tLQ0KDQojIyMgVGFzayAyDQoNCg0KYGBge3J9DQpteWRhdGEgPSByZWFkLmNzdihmaWxlPSJkYXRhL2NyZWRpdHJpc2suY3N2IikNCmhlYWQobXlkYXRhKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCiNFeHRyYWN0aW5nIHRoZSBDaGVja2luZyBDb2x1bW4NCmNoZWNraW5nID0gbXlkYXRhJENoZWNraW5nIA0KDQojQ2FsbGluZyB0aGUgQ2hlY2tpbmcgQ29sdW1uDQpjaGVja2luZyANCmBgYA0KDQoNCg0KYGBge3J9DQojRXh0cmFjdGluZyB0aGUgU2F2aW5ncyBDb2x1bW4NClNhdmluZ3MgPSBteWRhdGEkU2F2aW5ncw0KDQojQ2FsbGluZyB0aGUgU2F2aW5ncyBDb2x1bW4NClNhdmluZ3MNCmBgYA0KDQoNCg0KYGBge3J9DQojVXNpbmcgdGhlICdtZWFuJyBmdW5jdGlvbiBvbiBjaGVja2luZyB0byBjYWxjdWxhdGUgdGhlIGNoZWNraW5nIGF2ZXJhZ2UgYW5kIG5hbWluZyB0aGUgYXZlcmFnZSAnbWVhbkNoZWNraW5nJw0KbWVhbkNoZWNraW5nID0gbWVhbihjaGVja2luZykNCg0KI0NhbGxpbmcgdGhlIGF2ZXJhZ2UNCm1lYW5DaGVja2luZw0KDQojRmluZCB0aGUgYXZlcmFnZSBvZiB0aGUgc2F2aW5ncyBjb2x1bW4gYW5kIG5hbWUgdGhlIGF2ZXJhZ2Ugb2YgdGhlIHNhdmluZ3MgbWVhblNhdmluZ3MNCm1lYW5TYXZpbmdzID0gbWVhbihTYXZpbmdzKQ0KDQojQ2FsbCBtZWFuIHNhdmluZ3MNCm1lYW5TYXZpbmdzDQpgYGANCg0KDQoNCmBgYHtyfQ0KI0NvbXB1dGluZyB0aGUgc3RhbmRhcmQgZGV2aWF0aW9uIG9mIHN0YW5kYXJkIGRldmlhdGlvbg0Kc3ByZWFkQ2hlY2tpbmcgPSBzZChjaGVja2luZykNCg0KI0ZpbmQgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBzYXZpbmdzDQpzcHJlYWRTYXZpbmdzID0gc2QoU2F2aW5ncykNCmBgYA0KDQoNCg0KYGBge3J9DQojQ29tcHV0ZSB0aGUgc25yIG9mIENoZWNraW5nIGFuZCBuYW1lIGl0IHNucl9DaGVja2luZw0Kc25yX0NoZWNraW5nID0gbWVhbkNoZWNraW5nL3NwcmVhZENoZWNraW5nDQoNCiNDYWxsIHNucl9DaGVja2luZw0Kc25yX0NoZWNraW5nDQoNCiNGaW5kIHRoZSBzbnIgb2YgdGhlIHNhdmluZ3MgYW5kIG5hbWUgaXQgc25yX1NhdmluZw0Kc25yX1NhdmluZ3MgPSBtZWFuU2F2aW5ncy9zcHJlYWRTYXZpbmdzDQoNCiNDYWxsIHNucl9TYXZpbmcNCnNucl9TYXZpbmdzDQoNCmBgYA0KDQpPZiB0aGUgQ2hlY2tpbmcgYW5kIFNhdmluZ3MsIHdoaWNoIGhhcyBhIGhpZ2hlciBTTlI/IFdoeSBkbyB5b3UgdGhpbmsgdGhhdCBpcz8NClNhdmluZ3MgYmVjYXVzZSBpbiBhIHRyYWRpdGlvbmFsIGNoZWNraW5nIGFjY291bnRzIG1vbmV5IGlzIG1vdmluZyBpbiBhbmQgb3V0IG1vcmUgb2Z0ZW4gdGhhbiBpbiBhIHNhdmluZ3MgYWNjb3VudC4NCg0KLS0tLS0tLS0tLS0tDQoNCiMjIyBUYXNrIDMNCg0KIVtXYXRzb25dKGltZ3Mvd2F0c29uX2ltZzAwLnBuZykNCg0K