# random intercepts for both person and item
m3 <- glmer(response ~ -1 + gender +age + education + specificity + availabil + comfort + vague +
desirab + (1|id_item) + (1|rater_id), data=data.p,family = binomial)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0102 (tol =
## 0.001, component 1)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## response ~ -1 + gender + age + education + specificity + availabil +
## comfort + vague + desirab + (1 | id_item) + (1 | rater_id)
## Data: data.p
##
## AIC BIC logLik deviance df.resid
## 679.3 723.3 -329.6 659.3 595
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.5496 -0.6069 0.2858 0.5786 3.7302
##
## Random effects:
## Groups Name Variance Std.Dev.
## rater_id (Intercept) 1.3401 1.1576
## id_item (Intercept) 0.9243 0.9614
## Number of obs: 605, groups: rater_id, 31; id_item, 20
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## gender -0.4894556 0.4309964 -1.136 0.25611
## age 0.0007896 0.0101857 0.078 0.93821
## education 0.2639205 0.1086339 2.429 0.01512 *
## specificity 0.0069497 0.0637375 0.109 0.91317
## availabil 0.2760412 0.0846789 3.260 0.00111 **
## comfort -0.2365754 0.0894554 -2.645 0.00818 **
## vague 0.1747309 0.0778301 2.245 0.02477 *
## desirab 0.2104592 0.0716541 2.937 0.00331 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## gender age eductn spcfct avalbl comfrt vague
## age -0.106
## education -0.308 -0.599
## specificity -0.036 0.233 -0.049
## availabil -0.020 0.073 0.128 0.066
## comfort -0.111 -0.089 -0.064 -0.106 0.239
## vague -0.005 -0.192 0.059 -0.413 0.203 -0.111
## desirab -0.043 -0.048 0.093 0.038 0.019 -0.247 0.041
## convergence code: 0
## Model failed to converge with max|grad| = 0.0102 (tol = 0.001, component 1)
## persistence responses (depression 1-4)
## Note. Need to find models for ordinal categorical outcome and NOT used for the conference
m4 <- lmer(response ~ -1 + gender +age + education + specificity + availabil + comfort + vague +
desirab + (1|id_item) + (1|rater_id), data=dat1, REML = FALSE)
summary(m4)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula:
## response ~ -1 + gender + age + education + specificity + availabil +
## comfort + vague + desirab + (1 | id_item) + (1 | rater_id)
## Data: dat1
##
## AIC BIC logLik deviance df.resid
## 1719.5 1768.0 -848.7 1697.5 594
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.71084 -0.75020 -0.09062 0.72008 2.83339
##
## Random effects:
## Groups Name Variance Std.Dev.
## rater_id (Intercept) 0.3879 0.6228
## id_item (Intercept) 0.1166 0.3415
## Residual 0.8150 0.9028
## Number of obs: 605, groups: rater_id, 31; id_item, 20
##
## Fixed effects:
## Estimate Std. Error t value
## gender 0.302112 0.216568 1.395
## age 0.006066 0.005005 1.212
## education 0.332166 0.052806 6.290
## specificity 0.004951 0.023835 0.208
## availabil 0.010735 0.029013 0.370
## comfort -0.052786 0.030890 -1.709
## vague 0.096671 0.027455 3.521
## desirab 0.089529 0.024567 3.644
##
## Correlation of Fixed Effects:
## gender age eductn spcfct avalbl comfrt vague
## age -0.130
## education -0.333 -0.654
## specificity -0.023 0.181 -0.040
## availabil -0.014 0.058 0.072 0.066
## comfort -0.097 -0.061 -0.036 -0.097 0.260
## vague -0.005 -0.144 0.034 -0.434 0.180 -0.106
## desirab -0.036 -0.045 0.039 -0.016 0.000 -0.182 0.072
1. for model-2: (a) make binary outcome using presence data; (b) find mixed modeling for ordinal categorical outcome
2. for model-1: (a) check residual distributions; (b) check references for outcome distribution assumptions; (c) add positive and negntive key (predictor) e.g. (-1 + key|id_item)