Outcome variable: social-cognitive perceptions of the depression items

# multidimensional model (random intercept)
m2 <-lmer(s_cog_value ~ gender +age + education + (1|id_item) + (-1+s_cog|rater_id), data=dat2, REML = FALSE)
summary(m2)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: s_cog_value ~ gender + age + education + (1 | id_item) + (-1 +  
##     s_cog | rater_id)
##    Data: dat2
## 
##      AIC      BIC   logLik deviance df.resid 
##  12032.2  12158.9  -5995.1  11990.2     3051 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5729 -0.5616  0.0301  0.5581  3.3136 
## 
## Random effects:
##  Groups   Name             Variance Std.Dev. Corr                   
##  rater_id s_cogavailabil   3.19866  1.7885                          
##           s_cogcomfort     4.27171  2.0668   -0.88                  
##           s_cogdesirab     2.27899  1.5096   -0.49  0.69            
##           s_cogspecificity 2.07464  1.4404    0.12  0.05 -0.16      
##           s_cogvague       3.07196  1.7527   -0.83  0.84  0.42  0.15
##  id_item  (Intercept)      0.07442  0.2728                          
##  Residual                  2.53508  1.5922                          
## Number of obs: 3072, groups:  rater_id, 31; id_item, 20
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept)  3.062e-01  3.772e-01   0.812
## gender       1.215e-01  1.757e-01   0.692
## age          9.903e-06  3.931e-03   0.002
## education   -1.030e-01  6.526e-02  -1.578
## 
## Correlation of Fixed Effects:
##           (Intr) gender age   
## gender    -0.492              
## age       -0.469  0.122       
## education -0.818  0.234  0.045

Outcome variable: item responses of the depression scale (20 items)

# random intercepts for both person and item 
m3 <- glmer(response ~ -1 +  gender +age + education + specificity + availabil + comfort + vague +
             desirab +  (1|id_item) + (1|rater_id), data=data.p,family = binomial)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0102 (tol =
## 0.001, component 1)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## response ~ -1 + gender + age + education + specificity + availabil +  
##     comfort + vague + desirab + (1 | id_item) + (1 | rater_id)
##    Data: data.p
## 
##      AIC      BIC   logLik deviance df.resid 
##    679.3    723.3   -329.6    659.3      595 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5496 -0.6069  0.2858  0.5786  3.7302 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  rater_id (Intercept) 1.3401   1.1576  
##  id_item  (Intercept) 0.9243   0.9614  
## Number of obs: 605, groups:  rater_id, 31; id_item, 20
## 
## Fixed effects:
##               Estimate Std. Error z value Pr(>|z|)   
## gender      -0.4894556  0.4309964  -1.136  0.25611   
## age          0.0007896  0.0101857   0.078  0.93821   
## education    0.2639205  0.1086339   2.429  0.01512 * 
## specificity  0.0069497  0.0637375   0.109  0.91317   
## availabil    0.2760412  0.0846789   3.260  0.00111 **
## comfort     -0.2365754  0.0894554  -2.645  0.00818 **
## vague        0.1747309  0.0778301   2.245  0.02477 * 
## desirab      0.2104592  0.0716541   2.937  0.00331 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             gender age    eductn spcfct avalbl comfrt vague 
## age         -0.106                                          
## education   -0.308 -0.599                                   
## specificity -0.036  0.233 -0.049                            
## availabil   -0.020  0.073  0.128  0.066                     
## comfort     -0.111 -0.089 -0.064 -0.106  0.239              
## vague       -0.005 -0.192  0.059 -0.413  0.203 -0.111       
## desirab     -0.043 -0.048  0.093  0.038  0.019 -0.247  0.041
## convergence code: 0
## Model failed to converge with max|grad| = 0.0102 (tol = 0.001, component 1)
## persistence responses (depression 1-4)
## Note. Need to find models for ordinal categorical outcome and NOT used for the conference

m4 <- lmer(response ~ -1 +  gender +age + education + specificity + availabil + comfort + vague +
             desirab +  (1|id_item) + (1|rater_id), data=dat1, REML = FALSE)
summary(m4)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: 
## response ~ -1 + gender + age + education + specificity + availabil +  
##     comfort + vague + desirab + (1 | id_item) + (1 | rater_id)
##    Data: dat1
## 
##      AIC      BIC   logLik deviance df.resid 
##   1719.5   1768.0   -848.7   1697.5      594 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.71084 -0.75020 -0.09062  0.72008  2.83339 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  rater_id (Intercept) 0.3879   0.6228  
##  id_item  (Intercept) 0.1166   0.3415  
##  Residual             0.8150   0.9028  
## Number of obs: 605, groups:  rater_id, 31; id_item, 20
## 
## Fixed effects:
##              Estimate Std. Error t value
## gender       0.302112   0.216568   1.395
## age          0.006066   0.005005   1.212
## education    0.332166   0.052806   6.290
## specificity  0.004951   0.023835   0.208
## availabil    0.010735   0.029013   0.370
## comfort     -0.052786   0.030890  -1.709
## vague        0.096671   0.027455   3.521
## desirab      0.089529   0.024567   3.644
## 
## Correlation of Fixed Effects:
##             gender age    eductn spcfct avalbl comfrt vague 
## age         -0.130                                          
## education   -0.333 -0.654                                   
## specificity -0.023  0.181 -0.040                            
## availabil   -0.014  0.058  0.072  0.066                     
## comfort     -0.097 -0.061 -0.036 -0.097  0.260              
## vague       -0.005 -0.144  0.034 -0.434  0.180 -0.106       
## desirab     -0.036 -0.045  0.039 -0.016  0.000 -0.182  0.072

next step

1. for model-2: (a) make binary outcome using presence data; (b) find mixed modeling for ordinal categorical outcome

2. for model-1: (a) check residual distributions; (b) check references for outcome distribution assumptions; (c) add positive and negntive key (predictor) e.g. (-1 + key|id_item)