library(ggplot2)
library(microbenchmark)ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))
values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)
)
positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)
)This does a ggplot2 object creation but no plot (so no code that does the hard bits gets executed).
microbenchmark(
poly = {
datapoly <- merge(values, positions, by = c("id"))
ggplot(datapoly, aes(x = x, y = y)) + geom_polygon(aes(fill = value, group = id))
}
,
map = {
ggplot() +
geom_map(data = values, map = positions,
aes(map_id = id, fill = value)) +
expand_limits(positions)
}
) -> mb2
autoplot(mb2) + aes(fill = expr) +
viridis::scale_fill_viridis(discrete=TRUE) +
hrbrthemes::theme_ipsum_rc(grid="X") +
theme(legend.position="none")This exercises the “hard bits”
tf <- tempfile(fileext = ".pdf")
pdf(tf, onefile = TRUE)
microbenchmark(
poly = {
datapoly <- merge(values, positions, by = c("id"))
print(ggplot(datapoly, aes(x = x, y = y)) + geom_polygon(aes(fill = value, group = id)))
}
,
map = {
print(ggplot() +
geom_map(data = values, map = positions,
aes(map_id = id, fill = value)) +
expand_limits(positions))
}
) -> mb
dev.off()## quartz_off_screen
## 2
unlink(tf)
autoplot(mb) + aes(fill = expr) +
viridis::scale_fill_viridis(discrete=TRUE) +
hrbrthemes::theme_ipsum_rc(grid="X") +
theme(legend.position="none")