Introduction

This conference paper is indebted to the work of Prof. Brian M. Walker in compiliing all the electoral results for the Westminster elections during the Act of Union period, 1801 - 1922. These election results were published in two volumes; Parliamentary Elections, 1801 - 1922 (1978) and Parliamentary Elections, 1922 - 1989 (1992).

To begin the underlying constituency map for Westminster elections from 1885 - 1910 was created by Martin Charlton of the National Centre for Geocomputation, Maynooth University. Martin created the map utilised the baronies.shp and eds.shp files released by the Ordnance Survey of Ireland. The constituency boundary lines were created from Whyte’s map (reproduced in Walker’s 1978 volume) and by examining the Representation of People Act, 1885 which created the new boundaries in 1885. This is expanded in greater detail methodologically by Martin Charlton in this pdf doc.

The data shown in these maps was collated by Neale Rooney and Jack Kavanagh from Brian Walker’s volumes and was collated into a series of csv files. These files were then ‘joined’ to the map using the program QGIS, there is good tutorial adding csv files to ESRI shapefiles here. In total 8 different maps were created, representing the 8 elections that occurred between 1885 and 1910. The 1918 election utilises a different constituency map that due to time constraints we were unable to create. In addition a map without any numeric data was added called map_orig which is there for anyone to use for future analysis.

The csv files listing all the election returns and the shapefiles (maps) are available from a download link here. Once that has downloaded place the files into your working directory. You can set your working directory in RStudio via the Session tab. Be aware when importing the shapefiles that occasionally the numeric totals will import as factors. Using the readOGR function from the package ‘rgdal’ and specifying stringsAsFactors = FALSE should fix that issue.

For new users of R, I have created a separate RData file called, ConfMaps.RData within the Dropbox folder. Place this file within the working directory and type load(‘ConfMaps.RData’) into the console, this will import the entire file with the maps already imported into the R environment.

The maps for this paper utilised the following packages which must be installed, ‘tmap’, ‘tmaptools’ and ‘dplyr’.

Importing the map files

load('ConfMaps.RData')
library(tmap)
library(tmaptools)
library(dplyr)
## To begin here is the map of Irish constituencies 

# First import the map without any electoral data. 

read_shape('map_orig/map_orig.shp') -> master_map

# Use the qtm function of 'tmap' 

qtm(master_map, fill = "darkgrey", text = "C1885", title = "Map of Southern Irish Constituencies 1885 - 1910", text.size = "AREA", scale = 0.5) + tm_scale_bar()

Map Naming Convention

Each map is named for the election i.e. con85 for the election of 1885, con86 for the election of 1886 and so forth. con1910_1 and con1910_2 are listed as such for the two elections held in January and December 1910 respectively. The smaller maps focusing upon Dublin City and County follow the same naming convention as shown above.

## The following code will display all the information contained with the map

con85@data
##    OBJECTID              C1885  Shape_Leng   Shape_Area UNION85 NAT85
## 0         1               Birr  242572.821 1082699772.4     760  3408
## 1         2             Carlow  219821.038  896120432.1     751  4801
## 2         3      College Green    9043.524    3561735.3      NA    NA
## 3         4          Connemara 1170387.314 2082452059.2      NA    NA
## 4         5          Cork City   84559.364  184449501.8    1464  6716
## 5         6     Dublin Harbour   16620.841    5698524.8      NA    NA
## 6         7         East Cavan  195783.345  639831060.9      NA    NA
## 7         8        East Cavan+  131571.816  244991120.0      NA    NA
## 8         9         East Clare  340262.388 1838645567.7     289  6224
## 9        10          East Cork  188826.347  670371073.8      NA    NA
## 10       11       East Donegal  234429.171 1041027451.2      NA    NA
## 11       12        East Galway  283725.760 1449940000.3      NA    NA
## 12       13         East Kerry  231906.704 1247618306.3      30  3169
## 13       14      East Limerick  331605.560 1211043881.2      NA    NA
## 14       15          East Mayo  199971.776  633462562.9      NA    NA
## 15       16     East Tipperary  202302.169  877738210.7     192  4064
## 16       17     East Waterford  252611.655  925520715.0     314  3291
## 17       18       East Wicklow  197924.246  693461073.3    1000  3385
## 18       19        Galway City   81338.558   99055399.0     164  1335
## 19       20      Kilkenny City   37584.038   43989092.8      NA    NA
## 20       21               Leix  190475.558  756106365.3     507  3750
## 21       22      Limerick City   74880.314  149834238.9     635  3098
## 22       23           Mid Cork  270201.157 1406510371.0     106  5033
## 23       24      Mid Tipperary  305643.831 1112061556.9     255  3804
## 24       25    North-East Cork  214301.152 1138970556.7      NA    NA
## 25       26         North Cork  230840.565 1326540970.4      NA    NA
## 26       27      North Donegal  454886.997 1040722179.2     952  4597
## 27       28       North Dublin  313318.265  825470566.9    1425  7560
## 28       29       North Galway  278916.307 1232591564.8      NA    NA
## 29       30        North Kerry  204946.947  902027346.0      NA    NA
## 30       31      North Kildare  187719.058  829690477.1     467  3168
## 31       32     North Kilkenny  269842.179 1052692426.8     174  4084
## 32       33      North Leitrim  249890.697  988959847.8     541  4686
## 33       34     North Longford  141204.092  483507041.6     163  2549
## 34       35        North Louth  171767.672  401730711.8      NA    NA
## 35       36         North Mayo  797898.867 2130756517.4      NA    NA
## 36       37        North Meath  255463.708 1017088826.0      NA    NA
## 37       38     North Monaghan  198280.535  675611188.5    2685  4055
## 38       39    North Roscommon  309816.307 1123744159.9     366  6102
## 39       40        North Sligo  404062.897  845927472.0     772  5216
## 40       41    North Tipperary  232798.074 1366024064.5     252  4789
## 41       42    North Westmeath  193295.985  957958556.7      NA    NA
## 42       43      North Wexford  236103.824 1429391556.0     917  6531
## 43       44 North/South Dublin    3022.665     367749.6      NA    NA
## 44       45             Ossory  217943.299  964273385.3     293  3959
## 45       46    South-East Cork  356138.305  772544132.0     661  4620
## 46       47         South Cork  299587.664  872512244.9     195  4823
## 47       48      South Donegal  476376.754 1235018627.1    1369  5055
## 48       49       South Dublin   77831.484   83114937.3    3736  5114
## 49       50       South Galway  493323.385 1488810911.0      NA    NA
## 50       51        South Kerry  702598.013 1804924701.1     133  2742
## 51       52      South Kildare  240611.826  865230908.3      NA    NA
## 52       53     South Kilkenny  203605.791  976011861.9     222  4088
## 53       54      South Leitrim  198398.407  617824111.0     489  4525
## 54       55     South Longford  163071.354  608113154.8      NA    NA
## 55       56        South Louth  125911.385  420828824.8      NA    NA
## 56       57         South Mayo  261922.047 1080783006.4      75  4953
## 57       58        South Meath  268843.293 1330464576.5      NA    NA
## 58       59     South Monaghan  181594.956  619095586.5     963  4735
## 59       60    South Roscommon  314730.933 1409056995.2     338  6033
## 60       61        South Sligo  250795.479 1031218091.6     541  5151
## 61       62    South Tipperary  245873.291  945691178.5     122  3572
## 62       63    South Westmeath  202017.875  878493715.5     200  3618
## 63       64      South Wexford  263729.118  940940388.1      NA    NA
## 64       65        St Patricks    8297.544    4182778.5    1162  5330
## 65       66  St Stephens Green    8406.035    3656081.2    3334  5277
## 66       67          Tullamore  222611.721  918190267.5      NA    NA
## 67       68     Waterford City   37386.511   41643756.8     276  2420
## 68       69         West Cavan  307203.872 1047230131.4    1779  6425
## 69       70         West Clare  352774.455 1514291223.3     289  6763
## 70       71          West Cork  967673.570 1131734945.7     373  3920
## 71       72       West Donegal  706000.910 1545886847.0      NA    NA
## 72       73         West Kerry  494237.051  852602982.6     262  2607
## 73       74      West Limerick  240845.580 1395144786.7      NA    NA
## 74       75          West Mayo  822867.296 1599722193.4     131  4790
## 75       76     West Waterford  226776.186  895241998.1     359  3746
## 76       77       West Wicklow  260419.448 1332450248.9     871  3721
##    TOTALVOTE8 ELECT85    TURN85
## 0        4168    5236 0.7960275
## 1        5552    6891 0.8056886
## 2          NA      NA        NA
## 3          NA      NA        NA
## 4        8180   14569 0.5614661
## 5          NA      NA        NA
## 6          NA      NA        NA
## 7          NA      NA        NA
## 8        6513   10128 0.6430687
## 9          NA      NA        NA
## 10         NA      NA        NA
## 11         NA      NA        NA
## 12       3199    5971 0.5357562
## 13         NA      NA        NA
## 14         NA      NA        NA
## 15       4256    6899 0.6169010
## 16       3605    5678 0.6349067
## 17       4385    5569 0.7873945
## 18       1499    2265 0.6618102
## 19         NA      NA        NA
## 20       4257    5472 0.7779605
## 21       3733    6010 0.6211314
## 22       5139    7409 0.6936159
## 23       4059    6517 0.6228326
## 24         NA      NA        NA
## 25         NA      NA        NA
## 26       5549    6932 0.8004905
## 27       8985   12329 0.7287696
## 28         NA      NA        NA
## 29         NA      NA        NA
## 30       3635    5108 0.7116288
## 31       4258    5647 0.7540287
## 32       5227    6483 0.8062625
## 33       2712    3714 0.7302100
## 34         NA      NA        NA
## 35         NA      NA        NA
## 36         NA      NA        NA
## 37       6740    7525 0.8956811
## 38       6468    8682 0.7449896
## 39       5988    7869 0.7609607
## 40       5041    7500 0.6721333
## 41         NA      NA        NA
## 42       7448    9768 0.7624898
## 43         NA      NA        NA
## 44       4252    5617 0.7569877
## 45       5281    8007 0.6595479
## 46       5018    7299 0.6874914
## 47       6424    7854 0.8179272
## 48       8850   11314 0.7822167
## 49         NA      NA        NA
## 50       2875    4529 0.6347980
## 51         NA      NA        NA
## 52       4310    5924 0.7275490
## 53       5014    6270 0.7996810
## 54         NA      NA        NA
## 55         NA      NA        NA
## 56       5028    7980 0.6300752
## 57         NA      NA        NA
## 58       5698    7474 0.7623762
## 59       6371    9351 0.6813175
## 60       5692    7693 0.7398934
## 61       3694    5841 0.6324260
## 62       3818    5419 0.7045580
## 63         NA      NA        NA
## 64       6492    8952 0.7252011
## 65       8611   10181 0.8457912
## 66         NA      NA        NA
## 67       2696    3946 0.6832235
## 68       8204   10109 0.8115541
## 69       7052    9813 0.7186385
## 70       4293    6124 0.7010124
## 71         NA      NA        NA
## 72       2869    5668 0.5061750
## 73         NA      NA        NA
## 74       4921    8009 0.6144338
## 75       4105    6025 0.6813278
## 76       4592    5226 0.8786835
## As you can see the Unionist, Nationaalist, Total Votes, Electorate and Turnout figures have already been added to the map file. Do not edit this unless you have already used R and are familiar with the environment. 

Tmap

The following code using the tmap package will display a chloroplethr map of unionist votes. This is adapted from Chris Brundson’s introduction to tmap which can be found at the following link.

## This creates two maps of Conservative and Nationalist Votes in the 1885 Westminster Election 

tm_shape(con85) + tm_fill(col=c("UNION85","NAT85"), title=c("Conservative Votes in 1885", "Nationalist Votes in 1885"), colorNA = NULL, style = "cont") + tm_borders() + tm_style_col_blind()

## The next step is to examine the turnout for each constituency 

tm_shape(con85) + tm_fill(col = "TURN85", colorNA = NULL, n=4, title = "% Turnout in 1885", style = "jenks") + tm_borders() + tm_text("C1885", size = "AREA", scale = 0.5) + tm_style_col_blind()

## There is one flaw from this map that needs to be rectified and that's the Dublin constituencies which are obscured due to the small geographical area. Therefore a small subset of the map needs to be created. 

dublin85 <- subset(con85, C1885 %in% c("North/South Dublin", "South Dublin", "North Dublin", "College Green", "St Patricks", "St Stephens Green", "Dublin Harbour"))

## Run this to create a quick thematic map to check every constituency was added. 

dublin85 %>% qtm

## In addition to the combined map, a smaller map of just Dublin city would also be useful. 

dublincity85 <- subset(dublin85, C1885 %in% c("College Green", "St Patricks", "St Stephens Green", "Dublin Harbour" ))

dublincity85 %>% qtm

## Now we can plot the same values on this smaller map of just Dublin County and Dublin City constituencies. 

tm_shape(dublin85) + tm_fill(col = "UNION85", colorNA = "grey", style = "cont", title = "Conservative Votes in Dublin County & City 1885") + tm_borders() + tm_text("C1885", size = "AREA", scale = 1) + tm_style_col_blind()

## Here is the map of just Dublin city 

tm_shape(dublincity85) + tm_fill(col = "UNION85", colorNA = "grey", style = "cont", title = "Conservative Votes in Dublin City 1885") + tm_borders() + tm_text("C1885", size = "AREA", scale = 1) + tm_style_col_blind()

## Next map is of the 1886 election, from this election onwards candidates utilise the term 'Unionist' when running. 

tm_shape(con86) + tm_fill(col="UNION86", colorNA = NULL, style = "cont", n=3, title = "Unionist Votes in 1886") + tm_borders() + tm_style_col_blind() + tm_text("C1885", size = "AREA", scale = 0.5)

## A smaller subset map of Dublin is needed for county and city constituencies. 

dublin86 <- subset(con86, C1885 %in% c("North/South Dublin", "South Dublin", "North Dublin", "College Green", "St Patricks", "St Stephens Green", "Dublin Harbour"))

dublin86 %>% qtm

dublincity86 <- subset(dublin86, C1885 %in% c("College Green", "St Patricks", "St Stephens Green", "Dublin Harbour"))

dublincity86 %>% qtm

## This is map of Unionist & Nationalist Votes in Dublin City 1886

tm_shape(dublincity86) + tm_fill(col = c("UNION86", "NAT86"), title=c("Unionist Votes in Dublin City 1886", "Nationalist Votes in Dublin City 1886"), style = "cont", n=3, colorNA = "darkgrey") + tm_borders() + tm_style_col_blind()

## This is a map of Unionist & Nationalist Votes in Dublin City & County in 1886

tm_shape(dublin86) + tm_fill(col = c("UNION86", "NAT86"), title = c("Unionist Votes", "Nationalist Votes"), style = "cont", n=3, colorNA = "darkgrey") + tm_borders() + tm_style_col_blind()

## Next map is of the 1892 election, showing Unionist, Anti-Parnellite and Parnellite Votes. 

tm_shape(con92) + tm_fill(col=c("UNION92","PN92","APN92"), colorNA = NULL, style = "cont", n=3, title =c("Unionist Votes in 1892", "Parnellite Votes in 1892", "Anti-Parnellite Votes in 1892")) + tm_borders() + tm_style_col_blind()