## 'data.frame': 620 obs. of 16 variables:
## $ id_item : Factor w/ 20 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ a_ab : num 1.1 0.85 2.12 0.62 1.06 1.75 1.06 0.84 1.36 1.15 ...
## $ b_ab : num 1.81 2.43 1.74 1.61 1.59 1.41 1.63 1.16 2.16 2.08 ...
## $ a_abd : num 1.134 0.894 2.036 0.744 1.185 ...
## $ b_abd : num 1.62 2.11 1.72 1.03 1.29 ...
## $ d_abd : num 0.797 0.743 0.845 0.738 0.775 0.85 0.775 0.761 0.764 0.778 ...
## $ rater_id : Factor w/ 31 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ gender : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ age : int 65 65 65 65 65 65 65 65 65 65 ...
## $ education : int 5 5 5 5 5 5 5 5 5 5 ...
## $ response : int 4 1 3 2 3 3 3 2 3 2 ...
## $ specificity: int -2 2 2 -3 -2 -2 -3 -3 -3 -3 ...
## $ availabil : int -3 -2 -2 -2 -2 -2 -3 2 -2 -3 ...
## $ comfort : int -1 -3 -1 -1 -1 -1 -1 -3 -2 0 ...
## $ vague : int 3 2 2 -2 3 2 2 -2 3 -3 ...
## $ desirab : int -2 -1 -3 2 -2 -2 -2 -2 -3 -1 ...
data.p<-read.csv("presence.long1.csv")
cols<-c(1,7)
data.p[cols] <- lapply(data.p[cols], factor)
str(data.p)
## 'data.frame': 620 obs. of 16 variables:
## $ id_item : Factor w/ 20 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ a_ab : num 1.1 0.85 2.12 0.62 1.06 1.75 1.06 0.84 1.36 1.15 ...
## $ b_ab : num 1.81 2.43 1.74 1.61 1.59 1.41 1.63 1.16 2.16 2.08 ...
## $ a_abd : num 1.134 0.894 2.036 0.744 1.185 ...
## $ b_abd : num 1.62 2.11 1.72 1.03 1.29 ...
## $ d_abd : num 0.797 0.743 0.845 0.738 0.775 0.85 0.775 0.761 0.764 0.778 ...
## $ rater_id : Factor w/ 31 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ gender : int 0 0 0 0 0 0 0 0 0 0 ...
## $ age : int 65 65 65 65 65 65 65 65 65 65 ...
## $ education : int 5 5 5 5 5 5 5 5 5 5 ...
## $ response : int 1 0 1 1 1 1 1 1 1 1 ...
## $ specificity: int -2 2 2 -3 -2 -2 -3 -3 -3 -3 ...
## $ availabil : int -3 -2 -2 -2 -2 -2 -3 2 -2 -3 ...
## $ comfort : int -1 -3 -1 -1 -1 -1 -1 -3 -2 0 ...
## $ vague : int 3 2 2 -2 3 2 2 -2 3 -3 ...
## $ desirab : int -2 -1 -3 2 -2 -2 -2 -2 -3 -1 ...
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## resp.mean 1.94 1.710 2.00 2.677 2.45 2.06 2.097 2.74 1.613 1.677 2.00
## resp.sd 1.09 0.938 1.03 0.979 1.15 1.09 0.978 0.93 0.882 0.832 1.02
## [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
## resp.mean 2.806 2.097 2.26 1.484 2.74 1.27 2.16 1.8 1.871
## resp.sd 0.946 0.944 1.12 0.851 1.12 0.64 1.04 1.1 0.991
##
## female male
## 13 18
item responses (1-4; rarely, sometimes, occasionally, all of the time)
recode item responses (depression responses: 1 coded to 0, all others coded to 1)
# item responses
q<-ggplot(data=data.p,aes(response))
q + geom_bar(width=0.5) + facet_wrap(~ id_item, , nrow = 4)
## specificity
sp<-ggplot(data=dat1,aes(specificity))
sp + geom_bar(width=0.5) + facet_wrap(~ id_item, , nrow = 4)
## availability
av<-ggplot(data=dat1,aes(availabil))
av + geom_bar(width=0.5) + facet_wrap(~ id_item, , nrow = 4)
## comfort
com<-ggplot(data=dat1,aes(comfort))
com + geom_bar(width=0.5) + facet_wrap(~ id_item, , nrow = 4)
## vague
vag<-ggplot(data=dat1,aes(vague))
vag + geom_bar(width=0.5) + facet_wrap(~ id_item, , nrow = 4)
#desirability
des<-ggplot(data=dat1,aes(desirab))
des + geom_bar(width=0.5) + facet_wrap(~ id_item, , nrow = 4)