Similar exercise, this time using PSID weights. This is the procedure to define individual weights.
From around 70,000 individual records, I save longitudinal weights. I define our analytical sample and consider only the first weight (i.e., the one at the start of the period of observation for individual \(i\)). If the individual \(i\) doesn’t have any weight, I get weights from member of the family unit \(u\) at time \(t\), compute the average and use it for individual \(i\). Using this procedure I only lost 400 individuals.
It’s important to note that non-sample members (that is, all of the ones don’t have sampling weights) don’t have probability of selection.
I get estimates of the effect of incarceration on mortality, where incarceration is based on the non-response and prison 95 variable, and examine an initial imputation model.
The variables I consider are:
- Gender (I)
- Age (I)
- Race (I)
- Income (V)
- Education (V)
- Poor health (V)
- Incarceration / non-response (V) 1995 question (I)
In this example, I only use data until 2013 based on the PSID file version 2015 (some deaths were updated retrospectively).
knitr::opts_knit$set(root.dir = 'Users/sdaza/Google Drive/01Projects/01IncarcerationHealth/')
I consider records since 1968 and respondents 18 years old or more, that is, a sample of 52131. During that period 6480 people died. The median age of death was 70.
Differences by gender. The odds ratios are lower than 1, timing is important, not just proportions!
# explore differences by gender
x <- org[, .(male = max(male, na.rm = TRUE),
prison = max(nrprison, na.rm = TRUE),
death = max(died, na.rm = TRUE),
age = max(agei, na.rm = TRUE)), pid]
# these numbers are different because of age >= 18
table(x[, .(prison, death, male)]) # very small sample sizes for women
, , male = 0
death
prison 0 1
0 23348 3113
1 53 2
, , male = 1
death
prison 0 1
0 21743 3318
1 507 47
# odds ratio male
a <- table(x[male == 1, .(prison, death)])
(a[2,2]*a[1,1]) / (a[2,1]*a[1,2]) # it's not higher than 1, timing might be more important rather than dying or not
[1] 0.6074814
# odd ratios female
b <- table(x[male == 0, .(prison, death)])
(b[2,2]*b[1,1]) / (b[2,1]*b[1,2]) # even
[1] 0.2830249
Just to get an idea of the missing data:
countmis(org)
dghealth eduic linc_adjc nrprison frace
0.381 0.134 0.081 0.072 0.001
The highest proportion of missing cases is health and education. I defined imputation multivel models, where I use both time invariant and variant variables, age and year. Just to provide an example, the income imputation model is:
\[income = \alpha + year + age + edu + prison \\
+ health + dropout + death + \delta_r + \epsilon_i \]
Death and dropout are time-invariant variables. For this exercise, I generated 20 imputations. Final versions of this exercise should use more iterations and imputations (e.g., 30 iterations, 60 imputations). Anyways mixing doesn’t look that bad. Increasing the number of imputations increases standard errors… so we have a trade-off here.


Then, I examine the distribution of the imputed variables by age and year. Weird pattern of the incarceration variable by year, still waiting the reply of the PSID staff. Health is also weird, I wouldn’t know what to do here.






Using only non-response incarceration variable
Without Sampling Weights
Not including the health covariate, although I we should include it.
Model 1: Standard Model
Multiple imputation results:
MIcombine.default(models)
results se (lower upper) missInfo
prison 0.50449028 0.325369393 -0.20183178 1.21081233 87 %
male 0.44423135 0.025623745 0.39400187 0.49446083 3 %
agec 0.07324287 0.001016449 0.07121386 0.07527189 39 %
fraceblack 0.33469254 0.029550290 0.27669615 0.39268893 10 %
fraceother -0.45199972 0.073862484 -0.59676759 -0.30723184 0 %
linc_adjc -0.06484816 0.025370244 -0.11944609 -0.01025024 84 %
eduic -0.04708562 0.005388101 -0.05799767 -0.03617356 51 %
Model 2: Marginal Structural Model
Multiple imputation results:
MIcombine.default(modelsMSM)
results se (lower upper) missInfo
prison 0.44663124 0.435119989 -0.47857893 1.37184141 79 %
male 0.44380861 0.026786933 0.39126728 0.49634994 8 %
agec 0.07288358 0.001150527 0.07060020 0.07516697 32 %
fraceblack 0.32723729 0.033011593 0.26241231 0.39206226 12 %
fraceother -0.44207346 0.069589427 -0.57846678 -0.30568013 1 %
linc_adjc -0.06345267 0.024096883 -0.11507379 -0.01183154 82 %
eduic -0.04706311 0.005353996 -0.05789591 -0.03623032 51 %
With Sampling Weights
Model 3: Standard model
Multiple imputation results:
MIcombine.default(models)
results se (lower upper) missInfo
prison 0.58334551 0.514293790 -0.5275316 1.69422264 85 %
male 0.44201707 0.033492235 0.3763610 0.50767315 4 %
agec 0.07996609 0.001619344 0.0767617 0.08317048 28 %
fraceblack 0.23120207 0.061401438 0.1107980 0.35160609 6 %
fraceother -0.55904430 0.085004437 -0.7256502 -0.39243836 0 %
linc_adjc -0.07383975 0.039641821 -0.1605515 0.01287200 90 %
eduic -0.05267090 0.006137095 -0.0649848 -0.04035701 44 %
Model 4: Marginal structural model
Multiple imputation results:
MIcombine.default(modelsMSM)
results se (lower upper) missInfo
prison 0.56651736 0.558569848 -0.63152350 1.76455822 83 %
male 0.44141862 0.034469556 0.37382071 0.50901653 7 %
agec 0.07967245 0.001648832 0.07640722 0.08293769 29 %
fraceblack 0.22037035 0.065652331 0.09148574 0.34925495 11 %
fraceother -0.54363578 0.086378586 -0.71294322 -0.37432835 2 %
linc_adjc -0.07176570 0.038563308 -0.15588229 0.01235089 89 %
eduic -0.05256326 0.005950793 -0.06447839 -0.04064814 42 %
Non-response prison + incarceration 1995
In this case, I remove all deaths before 1995!
Model 5: Standard Model
Multiple imputation results:
MIcombine.default(models)
results se (lower upper) missInfo
gprison 0.64052978 0.242807819 0.12130790 1.15975166 81 %
male 0.42268377 0.038996205 0.34624892 0.49911863 2 %
agec 0.07529019 0.001633397 0.07205602 0.07852437 29 %
fraceblack 0.39753298 0.043833436 0.31160247 0.48346349 4 %
fraceother 0.02585309 0.106274285 -0.18244399 0.23415017 1 %
linc_adjc -0.07468578 0.020877355 -0.11699102 -0.03238053 52 %
eduic -0.03999517 0.008909112 -0.05811509 -0.02187525 55 %
Model 6: Marginal Structural Model
Multiple imputation results:
MIcombine.default(modelsMSM)
results se (lower upper) missInfo
gprison 0.56192258 0.306621262 -0.07544905 1.19929422 68 %
male 0.42373299 0.041168154 0.34302278 0.50444320 5 %
agec 0.07415664 0.002341772 0.06951581 0.07879747 30 %
fraceblack 0.37409467 0.050721630 0.27459259 0.47359675 8 %
fraceother 0.07453221 0.104858238 -0.13100468 0.28006910 3 %
linc_adjc -0.07285328 0.020870104 -0.11488709 -0.03081948 47 %
eduic -0.03979432 0.008899276 -0.05785903 -0.02172961 53 %
With Sampling Weights
Model 7: Standard model
Multiple imputation results:
MIcombine.default(models)
results se (lower upper) missInfo
gprison 0.80701206 0.431891655 -0.10092007 1.71494418 74 %
male 0.42501641 0.050093581 0.32683372 0.52319910 1 %
agec 0.08664328 0.002657066 0.08142206 0.09186451 14 %
fraceblack 0.30190237 0.097293633 0.11119150 0.49261325 3 %
fraceother -0.09813854 0.122422394 -0.33808281 0.14180572 0 %
linc_adjc -0.07299860 0.028575888 -0.13140397 -0.01459323 58 %
eduic -0.04981319 0.009807579 -0.06942035 -0.03020602 40 %
Model 8: Marginal structural model
Multiple imputation results:
MIcombine.default(modelsMSM)
results se (lower upper) missInfo
gprison 0.76419857 0.481624582 -0.23953745 1.76793458 69 %
male 0.43064874 0.050652181 0.33135827 0.52993921 3 %
agec 0.08553634 0.002835551 0.07994048 0.09113220 23 %
fraceblack 0.28172130 0.103282716 0.07892054 0.48452207 12 %
fraceother -0.03931306 0.122611811 -0.27963703 0.20101092 2 %
linc_adjc -0.06777670 0.028033970 -0.12487795 -0.01067544 56 %
eduic -0.04972695 0.009554634 -0.06883532 -0.03061857 40 %
LS0tCnRpdGxlOiAiSW5jYXJjZXJhdGlvbiBFZmZlY3Qgb24gTW9ydGFsaXR5IFBTSUQgKyBJbXB1dGF0aW9uIE1vZGVsICsgV2VpZ2h0cyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKU2ltaWxhciBleGVyY2lzZSwgdGhpcyB0aW1lIHVzaW5nIFBTSUQgd2VpZ2h0cy4gVGhpcyBpcyB0aGUgcHJvY2VkdXJlIHRvIGRlZmluZSBpbmRpdmlkdWFsIHdlaWdodHMuIAoKRnJvbSBhcm91bmQgNzAsMDAwIGluZGl2aWR1YWwgcmVjb3JkcywgSSBzYXZlIGxvbmdpdHVkaW5hbCB3ZWlnaHRzLiBJIGRlZmluZSBvdXIgYW5hbHl0aWNhbCBzYW1wbGUgYW5kIGNvbnNpZGVyIG9ubHkgdGhlIGZpcnN0IHdlaWdodCAoaS5lLiwgdGhlIG9uZSBhdCB0aGUgc3RhcnQgb2YgdGhlIHBlcmlvZCBvZiBvYnNlcnZhdGlvbiBmb3IgaW5kaXZpZHVhbCAkaSQpLiBJZiB0aGUgaW5kaXZpZHVhbCAkaSQgZG9lc24ndCBoYXZlIGFueSB3ZWlnaHQsIEkgZ2V0IHdlaWdodHMgZnJvbSBtZW1iZXIgb2YgdGhlIGZhbWlseSB1bml0ICR1JCBhdCB0aW1lICR0JCwgY29tcHV0ZSB0aGUgYXZlcmFnZSBhbmQgdXNlIGl0IGZvciBpbmRpdmlkdWFsICRpJC4gVXNpbmcgdGhpcyBwcm9jZWR1cmUgSSBvbmx5IGxvc3QgNDAwIGluZGl2aWR1YWxzLiAKCkl0J3MgaW1wb3J0YW50IHRvIG5vdGUgdGhhdCBub24tc2FtcGxlIG1lbWJlcnMgKHRoYXQgaXMsIGFsbCBvZiB0aGUgb25lcyBkb24ndCBoYXZlIHNhbXBsaW5nIHdlaWdodHMpIGRvbid0IGhhdmUgcHJvYmFiaWxpdHkgb2Ygc2VsZWN0aW9uLgoKIEkgZ2V0IGVzdGltYXRlcyBvZiB0aGUgZWZmZWN0IG9mIGluY2FyY2VyYXRpb24gb24gbW9ydGFsaXR5LCB3aGVyZSBpbmNhcmNlcmF0aW9uIGlzIGJhc2VkIG9uIHRoZSBub24tcmVzcG9uc2UgYW5kIHByaXNvbiA5NSB2YXJpYWJsZSwgYW5kIGV4YW1pbmUgYW4gaW5pdGlhbCBpbXB1dGF0aW9uIG1vZGVsLiAKClRoZSB2YXJpYWJsZXMgSSBjb25zaWRlciBhcmU6IAoKLSBHZW5kZXIgKEkpCi0gQWdlIChJKQotIFJhY2UgKEkpCi0gSW5jb21lIChWKQotIEVkdWNhdGlvbiAoVikKLSBQb29yIGhlYWx0aCAoVikKLSBJbmNhcmNlcmF0aW9uIC8gbm9uLXJlc3BvbnNlIChWKSAxOTk1IHF1ZXN0aW9uIChJKQoKSW4gdGhpcyBleGFtcGxlLCBJIG9ubHkgdXNlIGRhdGEgdW50aWwgMjAxMyBiYXNlZCBvbiB0aGUgUFNJRCBmaWxlIHZlcnNpb24gMjAxNSAoc29tZSBkZWF0aHMgd2VyZSB1cGRhdGVkIHJldHJvc3BlY3RpdmVseSkuCgpgYGB7ciBzZXR1cH0Ka25pdHI6Om9wdHNfa25pdCRzZXQocm9vdC5kaXIgPSAnVXNlcnMvc2RhemEvR29vZ2xlIERyaXZlLzAxUHJvamVjdHMvMDFJbmNhcmNlcmF0aW9uSGVhbHRoLycpCmBgYAoKYGBge3IsIGluY2x1ZGU9RkFMU0V9CgpybShsaXN0PWxzKGFsbD1UUlVFKSkKbGlicmFyeShzZGF6YXIpCmxpYnJhcnkobGF0dGljZSkKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KHN1cnZleSkKbGlicmFyeShzdXJ2aXZhbCkKbGlicmFyeShpcHcpCmxpYnJhcnkodGV4cmVnKQoKbG9hZCgiL1VzZXJzL3NkYXphL0dvb2dsZSBEcml2ZS8wMVByb2plY3RzLzAxSW5jYXJjZXJhdGlvbkhlYWx0aC8wNVJlc2VhcmNoL3NkYXphL291dHB1dC9yZGF0YS9wc2lkL2ltcDMuUmRhdGEiKQoKIyBnZXQgZGF0YQpsb25nIDwtIGRhdGEudGFibGUoY29tcGxldGUoaW1wMywgImxvbmciLCBpbmMgPSBUUlVFKSkKIyBnZXQgbnVtYmVyIG9mIGltcHV0YXRpb25zCm51bWltcCA8LSBtYXgobG9uZ1ssIGFzLm51bWVyaWMoYXMuY2hhcmFjdGVyKC5pbXApKV0pCmV4aSA8LSBkYXRhLnRhYmxlKGNvbXBsZXRlKGltcDMsIDEpKQpvcmcgPC0gZGF0YS50YWJsZShjb21wbGV0ZShpbXAzLCAwKSkKCnRhYmxlKGxvbmckcHJpc29uOTUsIHVzZU5BID0gImlmYW55IikKdGFibGUobG9uZyR5ZWFyKQpgYGAKCkkgY29uc2lkZXIgcmVjb3JkcyBzaW5jZSAxOTY4IGFuZCByZXNwb25kZW50cyAxOCB5ZWFycyBvbGQgb3IgbW9yZSwgdGhhdCBpcywgYSBzYW1wbGUgb2YgYHIgbGVuZ3RoKHVuaXF1ZShvcmckcGlkKSlgLiBEdXJpbmcgdGhhdCBwZXJpb2QgYHIgc3VtKG9yZ1ssIGRpZWRdKWAgcGVvcGxlIGRpZWQuIFRoZSBtZWRpYW4gYWdlIG9mIGRlYXRoIHdhcyBgciByb3VuZChtZWRpYW4ob3JnW2RpZWQgPT0gMSwgYWdlaV0pLCAyKWAuCgpEaWZmZXJlbmNlcyBieSBnZW5kZXIuIFRoZSBvZGRzIHJhdGlvcyBhcmUgbG93ZXIgdGhhbiAxLCB0aW1pbmcgaXMgaW1wb3J0YW50LCBub3QganVzdCBwcm9wb3J0aW9ucyEgCgpgYGB7ciwgZWNobyA9IFRSVUV9CiMgZXhwbG9yZSBkaWZmZXJlbmNlcyBieSBnZW5kZXIKeCA8LSBvcmdbLCAuKG1hbGUgPSBtYXgobWFsZSwgbmEucm0gPSBUUlVFKSwgCiAgICAgICAgICAgICBwcmlzb24gPSBtYXgobnJwcmlzb24sIG5hLnJtID0gVFJVRSksIAogICAgICAgICAgICAgZGVhdGggPSBtYXgoZGllZCwgbmEucm0gPSBUUlVFKSwgCiAgICAgICAgICAgICBhZ2UgPSBtYXgoYWdlaSwgbmEucm0gPSBUUlVFKSksIHBpZF0KIyB0aGVzZSBudW1iZXJzIGFyZSBkaWZmZXJlbnQgYmVjYXVzZSBvZiBhZ2UgPj0gMTgKdGFibGUoeFssIC4ocHJpc29uLCBkZWF0aCwgbWFsZSldKSAjIHZlcnkgc21hbGwgc2FtcGxlIHNpemVzIGZvciB3b21lbgoKIyBvZGRzIHJhdGlvIG1hbGUKYSA8LSB0YWJsZSh4W21hbGUgPT0gMSwgLihwcmlzb24sIGRlYXRoKV0pCihhWzIsMl0qYVsxLDFdKSAvIChhWzIsMV0qYVsxLDJdKSAjIGl0J3Mgbm90IGhpZ2hlciB0aGFuIDEsIHRpbWluZyBtaWdodCBiZSBtb3JlIGltcG9ydGFudCByYXRoZXIgdGhhbiBkeWluZyBvciBub3QKCiMgb2RkIHJhdGlvcyBmZW1hbGUKYiA8LSB0YWJsZSh4W21hbGUgPT0gMCwgLihwcmlzb24sIGRlYXRoKV0pIAooYlsyLDJdKmJbMSwxXSkgLyAoYlsyLDFdKmJbMSwyXSkgIyBldmVuIApgYGAKCkp1c3QgdG8gZ2V0IGFuIGlkZWEgb2YgdGhlIG1pc3NpbmcgZGF0YTogCgpgYGB7cn0KY291bnRtaXMob3JnKQpgYGAKClRoZSBoaWdoZXN0IHByb3BvcnRpb24gb2YgbWlzc2luZyBjYXNlcyBpcyBoZWFsdGggYW5kIGVkdWNhdGlvbi4gSSBkZWZpbmVkIGltcHV0YXRpb24gbXVsdGl2ZWwgbW9kZWxzLCB3aGVyZSBJIHVzZSBib3RoIHRpbWUgaW52YXJpYW50IGFuZCB2YXJpYW50IHZhcmlhYmxlcywgYWdlIGFuZCB5ZWFyLiBKdXN0IHRvIHByb3ZpZGUgYW4gZXhhbXBsZSwgdGhlIGluY29tZSBpbXB1dGF0aW9uIG1vZGVsIGlzOiAKCiAgICAgICAgICAgICAgIAokJGluY29tZSA9IFxhbHBoYSArIHllYXIgKyBhZ2UgKyBlZHUgKyBwcmlzb24gIFxcCisgaGVhbHRoICsgZHJvcG91dCArIGRlYXRoICsgXGRlbHRhX3IgKyBcZXBzaWxvbl9pICQkCgpEZWF0aCBhbmQgZHJvcG91dCBhcmUgdGltZS1pbnZhcmlhbnQgdmFyaWFibGVzLiBGb3IgdGhpcyBleGVyY2lzZSwgSSBnZW5lcmF0ZWQgMjAgaW1wdXRhdGlvbnMuIEZpbmFsIHZlcnNpb25zIG9mIHRoaXMgZXhlcmNpc2Ugc2hvdWxkIHVzZSBtb3JlIGl0ZXJhdGlvbnMgYW5kIGltcHV0YXRpb25zIChlLmcuLCAzMCBpdGVyYXRpb25zLCA2MCBpbXB1dGF0aW9ucykuIEFueXdheXMgbWl4aW5nIGRvZXNuJ3QgbG9vayB0aGF0IGJhZC4gSW5jcmVhc2luZyB0aGUgbnVtYmVyIG9mIGltcHV0YXRpb25zIGluY3JlYXNlcyBzdGFuZGFyZCBlcnJvcnMuLi4gc28gd2UgaGF2ZSBhIHRyYWRlLW9mZiBoZXJlLiAKCmBgYHtyLCBlY2hvPUZBTFNFfQpwbG90KGltcDMpCmBgYAoKVGhlbiwgSSBleGFtaW5lIHRoZSBkaXN0cmlidXRpb24gb2YgdGhlIGltcHV0ZWQgdmFyaWFibGVzIGJ5IGFnZSBhbmQgeWVhci4gV2VpcmQgcGF0dGVybiBvZiB0aGUgaW5jYXJjZXJhdGlvbiB2YXJpYWJsZSBieSB5ZWFyLCBzdGlsbCB3YWl0aW5nIHRoZSByZXBseSBvZiB0aGUgUFNJRCBzdGFmZi4gSGVhbHRoIGlzIGFsc28gd2VpcmQsIEkgd291bGRuJ3Qga25vdyB3aGF0IHRvIGRvIGhlcmUuIAoKYGBge3IsIGVjaG89RkFMU0V9CiMgaW5jb21lCnRlbXAgPC0gbG9uZ1ssIGxpc3QobXl2YXIgPSBtZWFuKGxpbmNfYWRqYywgbmEucm0gPSBUUlVFKSksIGJ5ID0gLihhZ2VpLCAuaW1wKV0KZ2dwbG90KHRlbXBbLmltcCAhPSAwICYgYWdlaSA+PSAxOCAmIGFnZWkgPD0gOTBdLCBhZXMoeCA9IGFnZWksIHkgPSBteXZhciwgZ3JvdXAgPSAuaW1wKSkgKwogZ2VvbV9saW5lKGNvbG91ciA9ICJncmF5IikgKwogZ2VvbV9saW5lKGRhdGEgPSB0ZW1wWy5pbXAgPT0gMCAmIGFnZWkgPj0xOCAmIGFnZWkgPD0gOTBdLCBhZXMoeCA9IGFnZWksIHkgPSBteXZhciksIGNvbG91ciA9ICJyZWQiKSArCiAgdGhlbWVfYncoKSArIGxhYnModGl0bGUgPSAiaW5jb21lIGJ5IGFnZSIsIHggPSAiXG5hZ2UiLCB5ID0gImxuIGluY29tZSBjZW50ZXJlZFxuIikKCnRlbXAgPC0gbG9uZ1ssIGxpc3QobXl2YXIgPSBtZWFuKGxpbmNfYWRqYywgbmEucm0gPSBUUlVFKSksIGJ5ID0gLih5ZWFyLCAuaW1wKV0KZ2dwbG90KHRlbXBbLmltcCAhPSAwXSwgYWVzKHggPSB5ZWFyLCB5ID0gbXl2YXIsIGdyb3VwID0gLmltcCkpICsKIGdlb21fbGluZShjb2xvdXIgPSAiZ3JheSIpICsKIGdlb21fbGluZShkYXRhID0gdGVtcFsuaW1wID09IDBdLCBhZXMoeCA9IHllYXIsIHkgPSBteXZhciksIGNvbG91ciA9ICJyZWQiKSArCiAgdGhlbWVfYncoKSArIGxhYnModGl0bGUgPSAiaW5jb21lIGJ5IHllYXIiLCB4ID0gIlxueWVhciIsIHkgPSAibG4gaW5jb21lIGNlbnRlcmVkXG4iKQoKIyBwcmlzb24KdGVtcCA8LSBsb25nWywgbGlzdChteXZhciA9IG1lYW4obnJwcmlzb24sIG5hLnJtID0gVFJVRSkpLCBieSA9IC4oYWdlaSwgLmltcCldCmdncGxvdCh0ZW1wWy5pbXAgIT0gMCAmIGFnZWkgPj0gMTggJiBhZ2VpIDw9IDYwXSwgYWVzKHggPSBhZ2VpLCB5ID0gbXl2YXIsIGdyb3VwID0gLmltcCkpICsKIGdlb21fbGluZShjb2xvdXIgPSAiZ3JheSIpICsKIGdlb21fbGluZShkYXRhID0gdGVtcFsuaW1wID09IDAgJiBhZ2VpID49IDE4ICYgYWdlaSA8PSA2MF0sIGFlcyh4ID0gYWdlaSwgeSA9IG15dmFyKSwgY29sb3VyID0gInJlZCIpICsKICB0aGVtZV9idygpICsgbGFicyh0aXRsZSA9ICJwcm9wb3J0aW9uIGluIHByaXNvbiBieSBhZ2UiLCB4ID0gIlxuYWdlIiwgeSA9ICJwcm9wb3J0aW9uIGluIHByaXNvbiBcbiIpCgp0ZW1wIDwtIGxvbmdbLCBsaXN0KG15dmFyID0gbWVhbihucnByaXNvbiwgbmEucm0gPSBUUlVFKSksIGJ5ID0gLih5ZWFyLCAuaW1wKV0KZ2dwbG90KHRlbXBbLmltcCAhPSAwIF0sIGFlcyh4ID0geWVhciwgeSA9IG15dmFyLCBncm91cCA9IC5pbXApKSArCiBnZW9tX2xpbmUoY29sb3VyID0gImdyYXkiKSArCiBnZW9tX2xpbmUoZGF0YSA9IHRlbXBbLmltcCA9PSAwXSwgYWVzKHggPSB5ZWFyLCB5ID0gbXl2YXIpLCBjb2xvdXIgPSAicmVkIikgKwogIHRoZW1lX2J3KCkgKyBsYWJzKHRpdGxlID0gInByb3BvcnRpb24gaW4gcHJpc29uIGJ5IHllYXIiLCB4ID0gIlxueWVhciIsIHkgPSAicHJvcG9ydGlvbiBpbiBwcmlzb24gXG4iKQoKIyBoZWFsdGgKdGVtcCA8LSBsb25nWywgbGlzdChteXZhciA9IG1lYW4oZGdoZWFsdGgsIG5hLnJtID0gVFJVRSkpLCBieSA9IC4oYWdlaSwgLmltcCldCmdncGxvdCh0ZW1wWy5pbXAgIT0gMCAmIGFnZWkgPD0gOTBdLCBhZXMoeCA9IGFnZWksIHkgPSBteXZhciwgZ3JvdXAgPSAuaW1wKSkgKwogZ2VvbV9saW5lKGNvbG91ciA9ICJncmF5IikgKwogZ2VvbV9saW5lKGRhdGEgPSB0ZW1wWy5pbXAgPT0gMCAmIGFnZWkgPD0gOTBdLCBhZXMoeCA9IGFnZWksIHkgPSBteXZhciksIGNvbG91ciA9ICJyZWQiKSArCiAgdGhlbWVfYncoKSArIGxhYnModGl0bGUgPSAicHJvcG9ydGlvbiBpbiBwb29yIGhlYWx0aCBieSBhZ2UiLCB4ID0gIlxuYWdlIiwgeSA9ICJwcm9wb3J0aW9uIGluIHBvb3IgaGVhbHRoIFxuIikKCnRlbXAgPC0gbG9uZ1ssIGxpc3QobXl2YXIgPSBtZWFuKGRnaGVhbHRoLCBuYS5ybSA9IFRSVUUpKSwgYnkgPSAuKHllYXIsIC5pbXApXQpnZ3Bsb3QodGVtcFsuaW1wICE9IDAgXSwgYWVzKHggPSB5ZWFyLCB5ID0gbXl2YXIsIGdyb3VwID0gLmltcCkpICsKIGdlb21fbGluZShjb2xvdXIgPSAiZ3JheSIpICsKIGdlb21fbGluZShkYXRhID0gdGVtcFsuaW1wID09IDBdLCBhZXMoeCA9IHllYXIsIHkgPSBteXZhciksIGNvbG91ciA9ICJyZWQiKSArCiAgdGhlbWVfYncoKSArIGxhYnModGl0bGUgPSAicHJvcG9ydGlvbiBpbiBwb29yIGhlYWx0aCBieSB5ZWFyIiwgeCA9ICJcbnllYXIiLCB5ID0gInByb3BvcnRpb24gaW4gcG9vciBoZWFsdGggbiBcbiIpCgojIG9yZ1ssIG1heChhZ2VpKSwgLihpZCwgbWFsZSldWywgbWVhbihWMSksIG1hbGVdCiMgb3JnWywgbWVhbihkZWF0aCksIG1hbGVdCiMgdGFibGUob3JnW21hbGUgPT0gMCwgLihycHJpc29uLCBkaWVkKV0pICMgMjUwCiMgdGFibGUob3JnW21hbGUgPT0gMSwgZGllZF0pICMgNDAwCgojICMgam9iCiMgdGVtcCA8LSBsb25nWywgbGlzdChteXZhciA9IG1lYW4oam9iLCBuYS5ybSA9IFRSVUUpKSwgYnkgPSAuKGFnZWksIC5pbXApXQojIGdncGxvdCh0ZW1wWy5pbXAgIT0gMF0sIGFlcyh4ID0gYWdlaSwgeSA9IG15dmFyLCBncm91cCA9IC5pbXApKSArCiMgIGdlb21fbGluZShjb2xvdXIgPSAiZ3JheSIpICsKIyAgZ2VvbV9saW5lKGRhdGEgPSB0ZW1wWy5pbXAgPT0gMF0sIGFlcyh4ID0gYWdlaSwgeSA9IG15dmFyKSwgY29sb3VyID0gInJlZCIpICsKIyAgIHRoZW1lX2J3KCkgKyBsYWJzKHRpdGxlID0gImpvYiBieSBhZ2UiLCB4ID0gIlxuYWdlIiwgeSA9ICJwcm9wIGpvYlxuIikKIyAKIyB0ZW1wIDwtIGxvbmdbLCBsaXN0KG15dmFyID0gbWVhbihqb2IsIG5hLnJtID0gVFJVRSkpLCBieSA9IC4oeWVhciwgLmltcCldCiMgZ2dwbG90KHRlbXBbLmltcCAhPSAwXSwgYWVzKHggPSB5ZWFyLCB5ID0gbXl2YXIsIGdyb3VwID0gLmltcCkpICsKIyAgZ2VvbV9saW5lKGNvbG91ciA9ICJncmF5IikgKwojICBnZW9tX2xpbmUoZGF0YSA9IHRlbXBbLmltcCA9PSAwICYgeWVhciAlaW4lIHllYXJzXSwgYWVzKHggPSB5ZWFyLCB5ID0gbXl2YXIpLCBjb2xvdXIgPSAicmVkIikgKwojICAgdGhlbWVfYncoKSArIGxhYnModGl0bGUgPSAiam9iIGJ5IGFnZSIsIHggPSAiXG55ZWFyIiwgeSA9ICJ5ZWFycyBvZiBlZHVjYXRpb24gY2VudGVyZWRcbiIpCiMgCiMgCiMgdGVtcCA8LSBsb25nWywgbGlzdChteXZhciA9IG1lYW4oaGVhbHRodywgbmEucm0gPSBUUlVFKSksIGJ5ID0gLihhZ2VpLCAuaW1wKV0KIyBnZ3Bsb3QodGVtcFsuaW1wICE9IDBdLCBhZXMoeCA9IGFnZWksIHkgPSBteXZhciwgZ3JvdXAgPSAuaW1wKSkgKwojICBnZW9tX2xpbmUoY29sb3VyID0gImdyYXkiKSArCiMgIGdlb21fbGluZShkYXRhID0gdGVtcFsuaW1wID09IDAgJiBhZ2VpID49MTggJiBhZ2VpIDwgNjBdLCBhZXMoeCA9IGFnZWksIHkgPSBteXZhciksIGNvbG91ciA9ICJyZWQiKSArCiMgICB0aGVtZV9idygpICsgbGFicyh0aXRsZSA9ICJwcm9wb3J0aW9uIHBvb3IgaGVhbHRoIGJ5IGFnZSIsIHggPSAiXG5hZ2UiLCB5ID0gInByb3BvcnRpb24gcG9vciBoZWFsdGggXG4iKQojIAojIHRlbXAgPC0gbG9uZ1ssIGxpc3QobXl2YXIgPSBtZWFuKGhlYWx0aHcsIG5hLnJtID0gVFJVRSkpLCBieSA9IC4oeWVhciwgLmltcCldCiMgZ2dwbG90KHRlbXBbLmltcCAhPSAwXSwgYWVzKHggPSB5ZWFyLCB5ID0gbXl2YXIsIGdyb3VwID0gLmltcCkpICsKIyAgZ2VvbV9saW5lKGNvbG91ciA9ICJncmF5IikgKwojICBnZW9tX2xpbmUoZGF0YSA9IHRlbXBbLmltcCA9PSAwXSwgYWVzKHggPSB5ZWFyLCB5ID0gbXl2YXIpLCBjb2xvdXIgPSAicmVkIikgKwojICAgdGhlbWVfYncoKSArIGxhYnModGl0bGUgPSAicHJvcG9ydGlvbiBwb29yIGhlYWx0aCBieSB5ZWFyIiwgeCA9ICJcbnllYXIiLCB5ID0gInByb3BvcnRpb24gcG9vciBoZWFsdGggXG4iKQpgYGAKCmBgYHtyLCBlY2hvPUZBTFNFfQojIHJlZGVmaW5lIHNvbWUgdmFyaWFibGVzCmxpbXAgPC0gbG9uZ1suaW1wICE9IDBdCmxlbmd0aCh1bmlxdWUobGltcCRwaWQpKQoKc2V0a2V5KGxpbXAsIC5pbXAsIHBpZCwgc3RhcnQpCgpsaW1wWywgY3ByaXNvbiA6PSBjdW1zdW0obnJwcmlzb24pLCAKICAgICBieSA9IC4oLmltcCwgcGlkKV1bLCBwcmlzb24gOj0gaWZlbHNlKGNwcmlzb24gPiAwLCAxLCAwKV0KCm5hbWVzKGxpbXApCmxpbXBbLCBncHJpc29uIDo9IHBtYXgocHJpc29uLCBwcmlzb245NSldCnRhYmxlKGxpbXAkcHJpc29uKQoKIyBzZWxlY3Qgb25seSBwZW9wbGUgd2hvIGRpZWQgYWZ0ZXIgMTk5NQppZHMgPC0gdW5pcXVlKGxpbXBbZGllZCA9PSAxICYgeWVhciA8IDE5OTUsIHBpZF0pCmxlbmd0aChpZHMpCmxpbXA5NSA8LSBsaW1wWyFwaWQgJWluJSBpZHNdCiNsZW5ndGgodW5pcXVlKGxpbXA5NSRwaWQpKQojIHRhYmxlKGxpbXAkcHJpc29uLCB1c2VOQSA9ICJpZmFueSIpCmBgYAoKIyBVc2luZyBvbmx5IG5vbi1yZXNwb25zZSBpbmNhcmNlcmF0aW9uIHZhcmlhYmxlIAoKIyMgV2l0aG91dCBTYW1wbGluZyBXZWlnaHRzCgpOb3QgaW5jbHVkaW5nIHRoZSBoZWFsdGggY292YXJpYXRlLCBhbHRob3VnaCBJIHdlIHNob3VsZCBpbmNsdWRlIGl0LiAKCiMjIyBNb2RlbCAxOiBTdGFuZGFyZCBNb2RlbAoKYGBge3IsIGVjaG8gPSBGQUxTRX0KbW9kZWxzIDwtIGxpc3QoKQpmb3IgKGkgaW4gMTpudW1pbXApIHsgIyBudW1iZXIgb2YgaW1wdXRhdGlvbgogICAgICAjcHJpbnQocGFzdGUwKCI6Ojo6Ojo6OiBydW5uaW5nIG1vZGVsIGZvciBpbXB1dGF0aW9uICIsIGkpKQogICAgICB0IDwtIGxpbXBbLmltcCA9PSBpXQogICAgICBtb2RlbHNbW2ldXSA8LSBjb3hwaCggU3VydihzdGFydCwgc3RvcCwgZGllZCkgfiBwcmlzb24gKyBtYWxlICsgYWdlYyArIGZyYWNlICsgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICsgbGluY19hZGpjICsgZWR1aWMsIGRhdGEgPSB0KQp9CgpzdW1tYXJ5KG1pdG9vbHM6Ok1JY29tYmluZShtb2RlbHMpKQpgYGAKCiMjIyBNb2RlbCAyOiBNYXJnaW5hbCBTdHJ1Y3R1cmFsIE1vZGVsCgpgYGB7ciwgZWNobz1GQUxTRX0KbW9kZWxzTVNNIDwtIGxpc3QoKQpmb3IgKGkgaW4gMTpudW1pbXApIHsgIyBudW1iZXIgb2YgaW1wdXRhdGlvbnMKICAgICAgdCA8LSBsaW1wWy5pbXAgPT0gaV0KICAgICAgdzEgPC0gaXB3dG0oZXhwb3N1cmUgPSBkcm9wb3V0LCBmYW1pbHkgPSAic3Vydml2YWwiLAogICAgICAgICAgICAgIG51bWVyYXRvciA9IH4gbWFsZSArIGZyYWNlICsgYWdlYywKICAgICAgICAgICAgICBkZW5vbWluYXRvciA9IH4gIHByaXNvbiArIG1hbGUgKyBhZ2VjICsgZnJhY2UgKyBsaW5jX2FkamMgKyBlZHVpYywgCiAgICAgICAgICAgICAgaWQgPSBwaWQsCiAgICAgICAgICAgICAgdHN0YXJ0ID0gc3RhcnQsIHRpbWV2YXIgPSBzdG9wLAogICAgICAgICAgICAgIHR5cGUgPSAiZmlyc3QiLAogICAgICAgICAgICAgIGRhdGEgPSB0KQogICAgICB3MiA8LSBpcHd0bShleHBvc3VyZSA9IHByaXNvbiwgZmFtaWx5ID0gInN1cnZpdmFsIiwKICAgICAgICAgICAgICBudW1lcmF0b3IgPSB+ICBtYWxlICsgZnJhY2UgKyBhZ2VjLAogICAgICAgICAgICAgIGRlbm9taW5hdG9yID0gfiAgbWFsZSArIGFnZWMgKyBmcmFjZSArIGxpbmNfYWRqYyArIGVkdWljLAogICAgICAgICAgICAgIGlkID0gcGlkLAogICAgICAgICAgICAgIHRzdGFydCA9IHN0YXJ0LCB0aW1ldmFyID0gc3RvcCwKICAgICAgICAgICAgICB0eXBlID0gImZpcnN0IiwKICAgICAgICAgICAgICBkYXRhID0gdCkKICAgICAgdFssIHd0IDo9IHcxJGlwdy53ZWlnaHRzICogdzIkaXB3LndlaWdodHNdCiAgICAgIG1vZGVsc01TTVtbaV1dIDwtIGNveHBoKCBTdXJ2KHN0YXJ0LCBzdG9wLCBkaWVkKSB+IHByaXNvbiArIG1hbGUgKyBhZ2VjICsgZnJhY2UgKyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGluY19hZGpjICsgZWR1aWMgKyBjbHVzdGVyKHBpZCksCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHdlaWdodHMgPSB0JHd0LAogICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhID0gdCkKfQoKc3VtbWFyeShtaXRvb2xzOjpNSWNvbWJpbmUobW9kZWxzTVNNKSkKYGBgCgoKIyMgV2l0aCBTYW1wbGluZyBXZWlnaHRzCgojIyMgTW9kZWwgMzogU3RhbmRhcmQgbW9kZWwKCmBgYHtyLCBlY2hvID0gRkFMU0V9Cm1vZGVscyA8LSBsaXN0KCkKZm9yIChpIGluIDE6bnVtaW1wKSB7ICMgbnVtYmVyIG9mIGltcHV0YXRpb24KICAgICAgI3ByaW50KHBhc3RlMCgiOjo6Ojo6OjogcnVubmluZyBtb2RlbCBmb3IgaW1wdXRhdGlvbiAiLCBpKSkKICAgICAgdCA8LSBsaW1wWy5pbXAgPT0gaV0KICAgICAgZHMgPC0gc3Z5ZGVzaWduKGlkPX5jbHVzdGVyLCB3ZWlnaHRzPX5md3QsIAogICAgICAgICAgICAgICAgICAgICAgc3RyYXRhPX5zdHJhdHVtLCBkYXRhID0gdCwgbmVzdCA9IFRSVUUpCiAgICAgIG1vZGVsc1tbaV1dIDwtIHN2eWNveHBoKCBTdXJ2KHN0YXJ0LCBzdG9wLCBkaWVkKSB+IHByaXNvbiArIG1hbGUgKyBhZ2VjICsgZnJhY2UgKyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgKyBsaW5jX2FkamMgKyBlZHVpYywgZGF0YSA9IHQsIGRlc2lnbiA9IGRzKQoKfQoKc3VtbWFyeShtaXRvb2xzOjpNSWNvbWJpbmUobW9kZWxzKSkKYGBgCgojIyMgTW9kZWwgNDogTWFyZ2luYWwgc3RydWN0dXJhbCBtb2RlbAoKYGBge3IsIGVjaG8gPSBGQUxTRX0KCm1vZGVsc01TTSA8LSBsaXN0KCkKCmZvciAoaSBpbiAxOm51bWltcCkgeyAjIG51bWJlciBvZiBpbXB1dGF0aW9ucwogICAgICB0IDwtIGxpbXBbLmltcCA9PSBpXQogICAgICB3MSA8LSBpcHd0bShleHBvc3VyZSA9IGRyb3BvdXQsIGZhbWlseSA9ICJzdXJ2aXZhbCIsCiAgICAgICAgICAgICAgbnVtZXJhdG9yID0gfiBtYWxlICsgZnJhY2UgKyBhZ2VjLAogICAgICAgICAgICAgIGRlbm9taW5hdG9yID0gfiAgcHJpc29uICsgbWFsZSArIGFnZWMgKyBmcmFjZSArIGxpbmNfYWRqYyArIGVkdWljLCAKICAgICAgICAgICAgICBpZCA9IHBpZCwKICAgICAgICAgICAgICB0c3RhcnQgPSBzdGFydCwgdGltZXZhciA9IHN0b3AsCiAgICAgICAgICAgICAgdHlwZSA9ICJmaXJzdCIsCiAgICAgICAgICAgICAgZGF0YSA9IHQpCiAgICAgIHcyIDwtIGlwd3RtKGV4cG9zdXJlID0gcHJpc29uLCBmYW1pbHkgPSAic3Vydml2YWwiLAogICAgICAgICAgICAgIG51bWVyYXRvciA9IH4gIG1hbGUgKyBmcmFjZSArIGFnZWMsCiAgICAgICAgICAgICAgZGVub21pbmF0b3IgPSB+ICBtYWxlICsgYWdlYyArIGZyYWNlICsgbGluY19hZGpjICsgZWR1aWMsCiAgICAgICAgICAgICAgaWQgPSBwaWQsCiAgICAgICAgICAgICAgdHN0YXJ0ID0gc3RhcnQsIHRpbWV2YXIgPSBzdG9wLAogICAgICAgICAgICAgIHR5cGUgPSAiZmlyc3QiLAogICAgICAgICAgICAgIGRhdGEgPSB0KQogICAgICB0Wywgbnd0IDo9IGZ3dCAqIHcxJGlwdy53ZWlnaHRzICogdzIkaXB3LndlaWdodHNdCiAgICAgIGRzIDwtIHN2eWRlc2lnbihpZD1+Y2x1c3Rlciwgd2VpZ2h0cz1+bnd0LCBzdHJhdGE9fnN0cmF0dW0sIGRhdGEgPSB0LCBuZXN0ID0gVFJVRSkKICAgICAgbW9kZWxzTVNNW1tpXV0gPC0gc3Z5Y294cGgoIFN1cnYoc3RhcnQsIHN0b3AsIGRpZWQpIH4gcHJpc29uICsgbWFsZSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICsgYWdlYyArIGZyYWNlICsgbGluY19hZGpjICsgZWR1aWMsIGRlc2lnbiA9IGRzKQp9CgpzdW1tYXJ5KG1pdG9vbHM6Ok1JY29tYmluZShtb2RlbHNNU00pKQpgYGAKCiMgTm9uLXJlc3BvbnNlIHByaXNvbiArIGluY2FyY2VyYXRpb24gMTk5NQoKSW4gdGhpcyBjYXNlLCBJIHJlbW92ZSBhbGwgZGVhdGhzIGJlZm9yZSAxOTk1IQoKIyMjIE1vZGVsIDU6IFN0YW5kYXJkIE1vZGVsCgpgYGB7ciwgZWNobyA9IEZBTFNFfQptb2RlbHMgPC0gbGlzdCgpCmZvciAoaSBpbiAxOm51bWltcCkgeyAjIG51bWJlciBvZiBpbXB1dGF0aW9uCiAgICAgICNwcmludChwYXN0ZTAoIjo6Ojo6Ojo6IHJ1bm5pbmcgbW9kZWwgZm9yIGltcHV0YXRpb24gIiwgaSkpCiAgICAgIHQgPC0gbGltcDk1Wy5pbXAgPT0gaV0KICAgICAgbW9kZWxzW1tpXV0gPC0gY294cGgoIFN1cnYoc3RhcnQsIHN0b3AsIGRpZWQpIH4gZ3ByaXNvbiArIG1hbGUgKyBhZ2VjICsgZnJhY2UgKyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgKyBsaW5jX2FkamMgKyBlZHVpYywgZGF0YSA9IHQpCn0KCnN1bW1hcnkobWl0b29sczo6TUljb21iaW5lKG1vZGVscykpCmBgYAoKIyMjIE1vZGVsIDY6IE1hcmdpbmFsIFN0cnVjdHVyYWwgTW9kZWwKCmBgYHtyLCBlY2hvPUZBTFNFfQptb2RlbHNNU00gPC0gbGlzdCgpCmZvciAoaSBpbiAxOm51bWltcCkgeyAjIG51bWJlciBvZiBpbXB1dGF0aW9ucwogICAgICB0IDwtIGxpbXA5NVsuaW1wID09IGldCiAgICAgIHcxIDwtIGlwd3RtKGV4cG9zdXJlID0gZHJvcG91dCwgZmFtaWx5ID0gInN1cnZpdmFsIiwKICAgICAgICAgICAgICBudW1lcmF0b3IgPSB+IG1hbGUgKyBmcmFjZSArIGFnZWMsCiAgICAgICAgICAgICAgZGVub21pbmF0b3IgPSB+ICBncHJpc29uICsgbWFsZSArIGFnZWMgKyBmcmFjZSArIGxpbmNfYWRqYyArIGVkdWljLCAKICAgICAgICAgICAgICBpZCA9IHBpZCwKICAgICAgICAgICAgICB0c3RhcnQgPSBzdGFydCwgdGltZXZhciA9IHN0b3AsCiAgICAgICAgICAgICAgdHlwZSA9ICJmaXJzdCIsCiAgICAgICAgICAgICAgZGF0YSA9IHQpCiAgICAgIHcyIDwtIGlwd3RtKGV4cG9zdXJlID0gZ3ByaXNvbiwgZmFtaWx5ID0gInN1cnZpdmFsIiwKICAgICAgICAgICAgICBudW1lcmF0b3IgPSB+ICBtYWxlICsgZnJhY2UgKyBhZ2VjLAogICAgICAgICAgICAgIGRlbm9taW5hdG9yID0gfiAgbWFsZSArIGFnZWMgKyBmcmFjZSArIGxpbmNfYWRqYyArIGVkdWljLAogICAgICAgICAgICAgIGlkID0gcGlkLAogICAgICAgICAgICAgIHRzdGFydCA9IHN0YXJ0LCB0aW1ldmFyID0gc3RvcCwKICAgICAgICAgICAgICB0eXBlID0gImZpcnN0IiwKICAgICAgICAgICAgICBkYXRhID0gdCkKICAgICAgdFssIHd0IDo9IHcxJGlwdy53ZWlnaHRzICogdzIkaXB3LndlaWdodHNdCiAgICAgIG1vZGVsc01TTVtbaV1dIDwtIGNveHBoKCBTdXJ2KHN0YXJ0LCBzdG9wLCBkaWVkKSB+IGdwcmlzb24gKyBtYWxlICsgYWdlYyArIGZyYWNlICsgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxpbmNfYWRqYyArIGVkdWljICsgY2x1c3RlcihwaWQpLAogICAgICAgICAgICAgICAgICAgICAgICAgICB3ZWlnaHRzID0gdCR3dCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgZGF0YSA9IHQpCn0KCnN1bW1hcnkobWl0b29sczo6TUljb21iaW5lKG1vZGVsc01TTSkpCmBgYAoKCiMjIFdpdGggU2FtcGxpbmcgV2VpZ2h0cwoKIyMjIE1vZGVsIDc6IFN0YW5kYXJkIG1vZGVsCgpgYGB7ciwgZWNobyA9IEZBTFNFfQptb2RlbHMgPC0gbGlzdCgpCmZvciAoaSBpbiAxOm51bWltcCkgeyAjIG51bWJlciBvZiBpbXB1dGF0aW9uCiAgICAgICNwcmludChwYXN0ZTAoIjo6Ojo6Ojo6IHJ1bm5pbmcgbW9kZWwgZm9yIGltcHV0YXRpb24gIiwgaSkpCiAgICAgIHQgPC0gbGltcDk1Wy5pbXAgPT0gaV0KICAgICAgZHMgPC0gc3Z5ZGVzaWduKGlkPX5jbHVzdGVyLCB3ZWlnaHRzPX5md3QsIAogICAgICAgICAgICAgICAgICAgICAgc3RyYXRhPX5zdHJhdHVtLCBkYXRhID0gdCwgbmVzdCA9IFRSVUUpCiAgICAgIG1vZGVsc1tbaV1dIDwtIHN2eWNveHBoKCBTdXJ2KHN0YXJ0LCBzdG9wLCBkaWVkKSB+IGdwcmlzb24gKyBtYWxlICsgYWdlYyArIGZyYWNlICsgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICsgbGluY19hZGpjICsgZWR1aWMsIGRhdGEgPSB0LCBkZXNpZ24gPSBkcykKCn0KCnN1bW1hcnkobWl0b29sczo6TUljb21iaW5lKG1vZGVscykpCmBgYAoKIyMjIE1vZGVsIDg6IE1hcmdpbmFsIHN0cnVjdHVyYWwgbW9kZWwKCmBgYHtyLCBlY2hvID0gRkFMU0V9Cgptb2RlbHNNU00gPC0gbGlzdCgpCgpmb3IgKGkgaW4gMTpudW1pbXApIHsgIyBudW1iZXIgb2YgaW1wdXRhdGlvbnMKICAgICAgdCA8LSBsaW1wOTVbLmltcCA9PSBpXQogICAgICB3MSA8LSBpcHd0bShleHBvc3VyZSA9IGRyb3BvdXQsIGZhbWlseSA9ICJzdXJ2aXZhbCIsCiAgICAgICAgICAgICAgbnVtZXJhdG9yID0gfiBtYWxlICsgZnJhY2UgKyBhZ2VjLAogICAgICAgICAgICAgIGRlbm9taW5hdG9yID0gfiAgZ3ByaXNvbiArIG1hbGUgKyBhZ2VjICsgZnJhY2UgKyBsaW5jX2FkamMgKyBlZHVpYywgCiAgICAgICAgICAgICAgaWQgPSBwaWQsCiAgICAgICAgICAgICAgdHN0YXJ0ID0gc3RhcnQsIHRpbWV2YXIgPSBzdG9wLAogICAgICAgICAgICAgIHR5cGUgPSAiZmlyc3QiLAogICAgICAgICAgICAgIGRhdGEgPSB0KQogICAgICB3MiA8LSBpcHd0bShleHBvc3VyZSA9IGdwcmlzb24sIGZhbWlseSA9ICJzdXJ2aXZhbCIsCiAgICAgICAgICAgICAgbnVtZXJhdG9yID0gfiAgbWFsZSArIGZyYWNlICsgYWdlYywKICAgICAgICAgICAgICBkZW5vbWluYXRvciA9IH4gIG1hbGUgKyBhZ2VjICsgZnJhY2UgKyBsaW5jX2FkamMgKyBlZHVpYywKICAgICAgICAgICAgICBpZCA9IHBpZCwKICAgICAgICAgICAgICB0c3RhcnQgPSBzdGFydCwgdGltZXZhciA9IHN0b3AsCiAgICAgICAgICAgICAgdHlwZSA9ICJmaXJzdCIsCiAgICAgICAgICAgICAgZGF0YSA9IHQpCiAgICAgIHRbLCBud3QgOj0gZnd0ICogdzEkaXB3LndlaWdodHMgKiB3MiRpcHcud2VpZ2h0c10KICAgICAgZHMgPC0gc3Z5ZGVzaWduKGlkPX5jbHVzdGVyLCB3ZWlnaHRzPX5ud3QsIHN0cmF0YT1+c3RyYXR1bSwgZGF0YSA9IHQsIG5lc3QgPSBUUlVFKQogICAgICBtb2RlbHNNU01bW2ldXSA8LSBzdnljb3hwaCggU3VydihzdGFydCwgc3RvcCwgZGllZCkgfiBncHJpc29uICsgbWFsZSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICsgYWdlYyArIGZyYWNlICsgbGluY19hZGpjICsgZWR1aWMsIGRlc2lnbiA9IGRzKQp9CgpzdW1tYXJ5KG1pdG9vbHM6Ok1JY29tYmluZShtb2RlbHNNU00pKQpgYGAKCgo=