Directions

During ANLY 512 we will be studying the theory and practice of data visualization. We will be using R and the packages within R to assemble data and construct many different types of visualizations. We begin by studying some of the theoretical aspects of visualization. To do that we must appreciate the actual steps in the process of making a visualization.

Most of us use softare to do this and have done so for so long that we have lost an appreciation for the mechanistic steps involved in accurately graphing data. We will fix that this week by creating a series of analog (meaning you draw them by hand) graphics. The visualizations you create must be numerically and visually accurate and precisely scaled. Because of that the data sets we visualize will be small.

The final product of your homework (this file) should include scanned or photographed images for each question below and a short summary of the process.

To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded your will submit the link to that document on Moodle.

Questions

Find the mtcars data in R. This is the dataset that you will use to create your graphics. Use that data to draw by hand graphics for the next 4 questions.

load and view dataset mtcar

data("mtcars")
mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
  1. Draw a pie chart showing the proportion of cars from the mtcars data set that have different carb values.

how many unique Carb value?

unique(mtcars$carb)
## [1] 4 1 2 3 6 8

Count the number of times for each Carb value

length(mtcars$carb[mtcars$carb==1])
## [1] 7
length(mtcars$carb[mtcars$carb==2])
## [1] 10
length(mtcars$carb[mtcars$carb==3])
## [1] 3
length(mtcars$carb[mtcars$carb==4])
## [1] 10
length(mtcars$carb[mtcars$carb==6])
## [1] 1
length(mtcars$carb[mtcars$carb==8])
## [1] 1
# place the code to import graphics here
knitr::include_graphics('Q1.jpg',dpi=NA)

  1. Draw a bar graph, that shows the number of each gear type in mtcars.

how many unique Gear value?

unique(mtcars$gear)
## [1] 4 3 5

Count the number of times for each Gear value

length(mtcars$gear[mtcars$gear==3])
## [1] 15
length(mtcars$gear[mtcars$gear==4])
## [1] 12
length(mtcars$gear[mtcars$gear==5])
## [1] 5
# place the code to import graphics here
knitr::include_graphics('Q2.jpg',dpi=NA)

  1. Next show a stacked bar graph of the number of each gear type and how they are further divded out by cyl.
unique(mtcars$cyl,mtcars$gear==3)
## [1] 6 4 8
unique(mtcars$cyl,mtcars$gear==4)
## [1] 6 4 8
unique(mtcars$cyl,mtcars$gear==5)
## [1] 6 4 8
length(mtcars$cyl[mtcars$cyl==6 & mtcars$gear==3])
## [1] 2
length(mtcars$cyl[mtcars$cyl==4 & mtcars$gear==3])
## [1] 1
length(mtcars$cyl[mtcars$cyl==8 & mtcars$gear==3])
## [1] 12
length(mtcars$cyl[mtcars$cyl==6 & mtcars$gear==4])
## [1] 4
length(mtcars$cyl[mtcars$cyl==4 & mtcars$gear==4])
## [1] 8
length(mtcars$cyl[mtcars$cyl==8 & mtcars$gear==4])
## [1] 0
length(mtcars$cyl[mtcars$cyl==6 & mtcars$gear==5])
## [1] 1
length(mtcars$cyl[mtcars$cyl==4 & mtcars$gear==5])
## [1] 2
length(mtcars$cyl[mtcars$cyl==8 & mtcars$gear==5])
## [1] 2
# place the code to import graphics here
knitr::include_graphics('Q3.jpg',dpi=NA)

  1. Draw a scatter plot showing the relationship between wt and mpg.
plot(x = mtcars$wt,y = mtcars$mpg,
   xlab = "Weight",
   ylab = "Milage",
   main = "wt vs mpg"
)

# place the code to import graphics here
knitr::include_graphics('Q4.jpg',dpi=NA)

  1. Design a visualization of your choice using the data.
length((mtcars$hp[mtcars$hp<=100]))
## [1] 9
length((mtcars$hp[mtcars$hp<=200 & mtcars$hp>100]))
## [1] 16
length((mtcars$hp[mtcars$hp<=300 & mtcars$hp>200]))
## [1] 6
length((mtcars$hp[mtcars$hp<=400 & mtcars$hp>300]))
## [1] 1
a<-c(9,16,6,1)
b<-c("hp<=100","100<hp<=200","200<hp<=300","300<hp<=400")
pie(a,b)

# place the code to import graphics here
knitr::include_graphics('Q5.jpg',dpi=NA)