R is a language and environment for statistical computing and graphics.R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, .) and graphical techniques, and is highly extensible.
This notebook is a tutorial on how to use R.
First we will begin with a few basic operations.
A variable allows you to store values or an object (e.g. a function).
x = 2187
y = 81
vars = c(3,9,27,81,243,729,2187) # This is a vector
# 1 2 3 4 5 6 7
vars[1] #This calls the first value in the vector vars
## [1] 3
[1] 3
vars[2] #This calls the second value in the vector vars
## [1] 9
[2] 9
vars[1:3] #This calls the first through third values in the vector vars
## [1] 3 9 27
[1:3] 3,9,27
vars #This calls the vector
## [1] 3 9 27 81 243 729 2187
Below shows some simple arithmetic operations.
multiplication = 20*5
division = 2187/81
exponent = 9^3
R works with numerous data types. Some of the most basic types are: numeric,integers, logical (Boolean-TRUE/FALSE) and characters (string-"TEXT").
#Type: Character
#Example:"TRUE",'23.4'
v = "TRUE"
class(v)
## [1] "character"
#Type: Numeric
#Example: 12.3,6
v = 23.6
class(v)
## [1] "numeric"
#Type: Logical
#Example: TRUE,FALSE
v = TRUE
class(v)
## [1] "logical"
#Type: Factor
#Example: m f m f m
v = as.factor(c("m", "f", "m", "f"))
class(v)
## [1] "factor"
Before starting to work with R, we need to set the working directory.
—Set Working Directory, Choose Directory
il_income = read.csv(file = "data/il_income.csv")
top_il_income = read.csv(file = "data/top_il_income.csv")
We can extract values from the dataset to perform calculations.
DuPage = top_il_income$per_capita_income[1]
Lake = top_il_income$per_capita_income[2]
subtraction = DuPage-Lake
addition = DuPage+Lake
average = (DuPage+Lake)/2
mean(il_income$per_capita_income)
## [1] 25164.14
# average of the numbers; a calculated central value of a set of numbers
median(il_income$per_capita_income)
## [1] 24808.5
# the middle number in a set of numbers in value order
quantile(il_income$per_capita_income)
## 0% 25% 50% 75% 100%
## 14052.00 22666.00 24808.50 26899.75 38931.00
# cutpoints dividing the range of a probability distribution into contiguous intervals with equal probabilities
summary(il_income)
## rank county per_capita_income population
## Min. : 1.00 Adams : 1 Min. :14052 Min. : 4135
## 1st Qu.: 26.25 Alexander: 1 1st Qu.:22666 1st Qu.: 14284
## Median : 51.50 Bond : 1 Median :24808 Median : 26610
## Mean : 51.50 Boone : 1 Mean :25164 Mean : 126078
## 3rd Qu.: 76.75 Brown : 1 3rd Qu.:26900 3rd Qu.: 53319
## Max. :102.00 Bureau : 1 Max. :38931 Max. :5238216
## (Other) :96
## region
## Min. :1.000
## 1st Qu.:3.000
## Median :4.000
## Mean :3.735
## 3rd Qu.:5.000
## Max. :5.000
##
A sequence of data elements of the same basic type is defined as a vector.
# vector of numeric values
c(1, 2, 4, 7)
## [1] 1 2 4 7
# vector of logical values.
c(TRUE, FALSE, TRUE)
## [1] TRUE FALSE TRUE
# vector of character strings.
c("A", "B+", "B-", "C", "D+")
## [1] "A" "B+" "B-" "C" "D+"
Lists, as opposed to vectors, can hold components of different types.
scores = c(90, 85, 65) # vector of numeric values
grades = c("B", "C", "D-") # vector of character strings.
office_hours = c(TRUE, FALSE, FALSE) # vector of logical values.
student = list(scores,grades,office_hours) # list of vectors
student
## [[1]]
## [1] 90 85 65
##
## [[2]]
## [1] "B" "C" "D-"
##
## [[3]]
## [1] TRUE FALSE FALSE
We can retrieve components of the list with the single square bracket [] operator.
student[1]
## [[1]]
## [1] 90 85 65
student[2]
## [[1]]
## [1] "B" "C" "D-"
student[3]
## [[1]]
## [1] TRUE FALSE FALSE
# first two components of the list
student[1:2]
## [[1]]
## [1] 90 85 65
##
## [[2]]
## [1] "B" "C" "D-"
Using the double square bracket [[]] operator we can reference a member of the list directly.
student[[1]] # Components of the Scores Vector
## [1] 90 85 65
First element of the Scores vector
student[[1]][1]
## [1] 90
First three elements of the Scores vector
scores[[1]][1:3]
## [1] 90 NA NA
It’s possible to assign names to list members and reference them by names instead of by numeric indexes.
student = (office_hours = c(TRUE, FALSE, FALSE))
# student
# student$scores
# student$grades
# student$office_hours
When we need to store data in table form, we use data frames, which are created by combining lists of vectors of equal length. The variables of a data set are the columns and the observations are the rows.
The str() function helps us to display the internal structure of any R data structure or object to make sure that it’s correct.
str(il_income)
## 'data.frame': 102 obs. of 5 variables:
## $ rank : int 1 2 3 4 5 6 7 8 9 10 ...
## $ county : Factor w/ 102 levels "Adams","Alexander",..: 16 22 49 99 45 60 101 64 86 10 ...
## $ per_capita_income: int 30468 38931 38459 30791 30645 23937 24802 30728 23279 26087 ...
## $ population : int 5238216 933736 703910 687263 530847 307343 287078 266209 264052 208861 ...
## $ region : int 1 2 2 2 2 2 2 5 5 3 ...
Snapshot of the solar system.
name = c("Jupiter", "Earth", "Mars")
type = c( "Gas giant", "Terrestrial","Terrestrial")
diameter = c( 11.209, 1, 0.532)
rotation = c(0.41, 1, 1.03)
rings = c( TRUE, FALSE, FALSE)
Now, by combining the vectors of equal size, we can create a data frame object.
planets_df = data.frame(name,type,diameter,rotation,rings)
planets_df
## name type diameter rotation rings
## 1 Jupiter Gas giant 11.209 0.41 TRUE
## 2 Earth Terrestrial 1.000 1.00 FALSE
## 3 Mars Terrestrial 0.532 1.03 FALSE
Datacamp - Learn Data Science from your browser:
R-tutor - An R intro to stats that explains basic R concepts: