attach(mtcars)
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
# order dataset by wt and carb - first define the index of sorted rows & then use the sorted order conditions
mysort <- order(mtcars$carb, mtcars$wt, decreasing = FALSE)
mtcars[mysort, ]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
# create the new 2 datasets and append them; we'll bind rows; we could also use smartbind() for instance if
# variable names wouldn't be the same
mtcarsTop3 <- head(mtcars[mysort, ], 3)
mtcarsTop3
## mpg cyl disp hp drat wt qsec vs am gear carb
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
mtcarsBottom3 <- tail(mtcars[mysort, ], 3)
mtcarsBottom3
## mpg cyl disp hp drat wt qsec vs am gear carb
## Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
## Ferrari Dino 19.7 6 145 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
myNewMtcars <- rbind(mtcarsTop3, mtcarsBottom3)
myNewMtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
detach(mtcars)
attach(mtcars)
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
#- mean horsepower grouped by the number of cylinders
dataAggregation <- aggregate(mtcars$hp, by=list(cyl), FUN=mean, na.rm=TRUE)
dataAggregation
## Group.1 x
## 1 4 82.64
## 2 6 122.29
## 3 8 209.21
# rename programmatically
library(reshape) #install.packages("reshape")
dataAggregation <- rename(dataAggregation, c(x="meanHp"))
dataAggregation <- rename(dataAggregation, c(Group.1="cyl"))
dataAggregation
## cyl meanHp
## 1 4 82.64
## 2 6 122.29
## 3 8 209.21
mtcarsMerge <- merge(mtcars, dataAggregation, by = "cyl")
mtcarsMerge
## cyl mpg disp hp drat wt qsec vs am gear carb meanHp
## 1 4 22.8 140.8 95 3.92 3.150 22.90 1 0 4 2 82.64
## 2 4 22.8 108.0 93 3.85 2.320 18.61 1 1 4 1 82.64
## 3 4 24.4 146.7 62 3.69 3.190 20.00 1 0 4 2 82.64
## 4 4 21.5 120.1 97 3.70 2.465 20.01 1 0 3 1 82.64
## 5 4 30.4 75.7 52 4.93 1.615 18.52 1 1 4 2 82.64
## 6 4 33.9 71.1 65 4.22 1.835 19.90 1 1 4 1 82.64
## 7 4 26.0 120.3 91 4.43 2.140 16.70 0 1 5 2 82.64
## 8 4 30.4 95.1 113 3.77 1.513 16.90 1 1 5 2 82.64
## 9 4 32.4 78.7 66 4.08 2.200 19.47 1 1 4 1 82.64
## 10 4 21.4 121.0 109 4.11 2.780 18.60 1 1 4 2 82.64
## 11 4 27.3 79.0 66 4.08 1.935 18.90 1 1 4 1 82.64
## 12 6 21.0 160.0 110 3.90 2.620 16.46 0 1 4 4 122.29
## 13 6 21.0 160.0 110 3.90 2.875 17.02 0 1 4 4 122.29
## 14 6 17.8 167.6 123 3.92 3.440 18.90 1 0 4 4 122.29
## 15 6 21.4 258.0 110 3.08 3.215 19.44 1 0 3 1 122.29
## 16 6 18.1 225.0 105 2.76 3.460 20.22 1 0 3 1 122.29
## 17 6 19.2 167.6 123 3.92 3.440 18.30 1 0 4 4 122.29
## 18 6 19.7 145.0 175 3.62 2.770 15.50 0 1 5 6 122.29
## 19 8 18.7 360.0 175 3.15 3.440 17.02 0 0 3 2 209.21
## 20 8 17.3 275.8 180 3.07 3.730 17.60 0 0 3 3 209.21
## 21 8 14.3 360.0 245 3.21 3.570 15.84 0 0 3 4 209.21
## 22 8 14.7 440.0 230 3.23 5.345 17.42 0 0 3 4 209.21
## 23 8 10.4 472.0 205 2.93 5.250 17.98 0 0 3 4 209.21
## 24 8 16.4 275.8 180 3.07 4.070 17.40 0 0 3 3 209.21
## 25 8 19.2 400.0 175 3.08 3.845 17.05 0 0 3 2 209.21
## 26 8 15.2 275.8 180 3.07 3.780 18.00 0 0 3 3 209.21
## 27 8 15.2 304.0 150 3.15 3.435 17.30 0 0 3 2 209.21
## 28 8 10.4 460.0 215 3.00 5.424 17.82 0 0 3 4 209.21
## 29 8 15.8 351.0 264 4.22 3.170 14.50 0 1 5 4 209.21
## 30 8 15.5 318.0 150 2.76 3.520 16.87 0 0 3 2 209.21
## 31 8 15.0 301.0 335 3.54 3.570 14.60 0 1 5 8 209.21
## 32 8 13.3 350.0 245 3.73 3.840 15.41 0 0 3 4 209.21
detach(mtcars)
# Replicate the data frame (for keeping the # original data unchanged)
mtcarsBis <- mtcars
mtcarsBis$myCut1 <- cut(mtcarsBis$hp, breaks = 4)
mtcarsBis$myCut2 <- cut(mtcarsBis$hp, breaks = 4, labels=c(1:4))
mtcarsBis
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## myCut1 myCut2
## Mazda RX4 (51.7,123] 1
## Mazda RX4 Wag (51.7,123] 1
## Datsun 710 (51.7,123] 1
## Hornet 4 Drive (51.7,123] 1
## Hornet Sportabout (123,194] 2
## Valiant (51.7,123] 1
## Duster 360 (194,264] 3
## Merc 240D (51.7,123] 1
## Merc 230 (51.7,123] 1
## Merc 280 (123,194] 2
## Merc 280C (123,194] 2
## Merc 450SE (123,194] 2
## Merc 450SL (123,194] 2
## Merc 450SLC (123,194] 2
## Cadillac Fleetwood (194,264] 3
## Lincoln Continental (194,264] 3
## Chrysler Imperial (194,264] 3
## Fiat 128 (51.7,123] 1
## Honda Civic (51.7,123] 1
## Toyota Corolla (51.7,123] 1
## Toyota Corona (51.7,123] 1
## Dodge Challenger (123,194] 2
## AMC Javelin (123,194] 2
## Camaro Z28 (194,264] 3
## Pontiac Firebird (123,194] 2
## Fiat X1-9 (51.7,123] 1
## Porsche 914-2 (51.7,123] 1
## Lotus Europa (51.7,123] 1
## Ford Pantera L (194,264] 3
## Ferrari Dino (123,194] 2
## Maserati Bora (264,335] 4
## Volvo 142E (51.7,123] 1
Here the function cut() takes in as the first argument the continuous variable
# Replicate the data frame (for keeping the # original data unchanged)
mtcarsBis <- mtcars
tabel <- apply(mtcars, 2,fivenum)
id <- c("Min","Q1","Med","Q3","Max")
tabel <- cbind(id, tabel)
tabel
## id mpg cyl disp hp drat wt qsec vs am
## [1,] "Min" "10.4" "4" "71.1" "52" "2.76" "1.513" "14.5" "0" "0"
## [2,] "Q1" "15.35" "4" "120.65" "96" "3.08" "2.5425" "16.885" "0" "0"
## [3,] "Med" "19.2" "6" "196.3" "123" "3.695" "3.325" "17.71" "0" "0"
## [4,] "Q3" "22.8" "8" "334" "180" "3.92" "3.65" "18.9" "1" "1"
## [5,] "Max" "33.9" "8" "472" "335" "4.93" "5.424" "22.9" "1" "1"
## gear carb
## [1,] "3" "1"
## [2,] "3" "2"
## [3,] "4" "2"
## [4,] "4" "4"
## [5,] "5" "8"
# to wt by carburators
tapply(mtcars$wt, mtcars$carb, fivenum)
## $`1`
## [1] 1.835 2.067 2.320 2.840 3.460
##
## $`2`
## [1] 1.513 2.140 3.170 3.440 3.845
##
## $`3`
## [1] 3.730 3.755 3.780 3.925 4.070
##
## $`4`
## [1] 2.620 3.170 3.505 5.250 5.424
##
## $`6`
## [1] 2.77 2.77 2.77 2.77 2.77
##
## $`8`
## [1] 3.57 3.57 3.57 3.57 3.57
# Replicate the data frame (for keeping the # original data unchanged)
mtcarsBis <- mtcars
mtcarsBis$myCut3 <- with(mtcarsBis, ifelse(hp <= 123, 1,
ifelse(hp > 123 & hp <= 194, 2,
ifelse(hp > 194 & hp <= 264, 3,4)))
)
mtcarsBis
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## myCut3
## Mazda RX4 1
## Mazda RX4 Wag 1
## Datsun 710 1
## Hornet 4 Drive 1
## Hornet Sportabout 2
## Valiant 1
## Duster 360 3
## Merc 240D 1
## Merc 230 1
## Merc 280 1
## Merc 280C 1
## Merc 450SE 2
## Merc 450SL 2
## Merc 450SLC 2
## Cadillac Fleetwood 3
## Lincoln Continental 3
## Chrysler Imperial 3
## Fiat 128 1
## Honda Civic 1
## Toyota Corolla 1
## Toyota Corona 1
## Dodge Challenger 2
## AMC Javelin 2
## Camaro Z28 3
## Pontiac Firebird 2
## Fiat X1-9 1
## Porsche 914-2 1
## Lotus Europa 1
## Ford Pantera L 3
## Ferrari Dino 2
## Maserati Bora 4
## Volvo 142E 1
#if (any(mtcarsBis$hp <= 123)) {mtcarsBis$myCut3<-1}
# else if (any(mtcarsBis$hp>123 & mtcarsBis$hp<=194)) {mtcarsBis$myCut3<-2}
# else if (any(mtcarsBis$hp>194 & mtcarsBis$hp<=264)) { mtcarsBis$myCut3=3}
# else if (any(mtcarsBis$hp>264)){ mtcarsBis$myCut3=4}
# Replicate the data frame (for keeping the # original data unchanged)
mtcarsBis <- mtcars
x <- 1:11
varlist <- c("mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb")
match(varlist, colnames(mtcarsBis))
## [1] 1 2 3 4 5 6 7 8 9 10 11
for( i in match(varlist, colnames(mtcarsBis))){
x[i] <- (mean(mtcarsBis[[i]] ))
}
x
## [1] 20.0906 6.1875 230.7219 146.6875 3.5966 3.2172 17.8487
## [8] 0.4375 0.4062 3.6875 2.8125
seqReplicated2 <- function(from, to, by) {
sequence <- from # initialize the vector
while (max(sequence) < to - 1) {
sequence <- c(sequence, sequence[length(sequence)] + by)
}
return(sequence)
}
(result <- seqReplicated2(1, 10,3))
## [1] 1 4 7 10
source("seqReplica.R")
(result <- seqReplicated2(1, 10,3))
## [1] 1 4 7 10