Resultado da avaliação de Probabilidade e Estatística - Engenharia 2A e 2B - AEDB

2º Bimestre


library(readr)
notas <- read_delim("notas.CSV", 
    ";", escape_double = FALSE, col_types = cols(notas = col_number()), 
    trim_ws = TRUE)
notas$notas <-notas$notas/10

Tabulação das Notas por Turma

library(psych)
table(notas)
     turma
notas ENG_2A ENG_2B
  0        7     11
  0.5      1      2
  1        7     12
  1.5      3      7
  2        5      4
  2.5      7      5
  3       13      4
  3.5      0      2
  4        9      0
  4.5      2      2
  5        3      2
  5.5      0      1
  6        5      1
  6.5      1      1
  7        2      2
  8        4      1
  10       3      3
library("graphics")
### Mosaic plot of observed values
mosaicplot(table(notas),  las=2, col="steelblue",
           main = "Tabulação das notas")

Sumário - Turmas 2A e 2B

describeBy(notas$notas, notas$turma)

 Descriptive statistics by group 
group: ENG_2A
   vars  n mean   sd median trimmed  mad min max range skew kurtosis  se
X1    1 72 3.49 2.53      3    3.26 2.22   0  10    10 0.79     0.08 0.3
-------------------------------------------------------------- 
group: ENG_2B
   vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
X1    1 60 2.53 2.64    1.5    2.08 1.85   0  10    10 1.37     1.15 0.34

Sumário - Todos os alunos

psych::describe(notas$notas)
   vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
X1    1 132 3.05 2.62    2.5    2.73 2.22   0  10    10 1.01     0.38 0.23
library(ggplot2)
a <- ggplot(notas, aes(x = notas))
#histogram Eng
# Position adjustment: "identity" (overlaid)
a + geom_histogram(breaks=seq(0,10,1),aes(color = turma), fill = "white", alpha = 0.4,position="identity", closed = c("left"))+
  scale_x_continuous(limits = c(0,10), breaks=seq(0,10,1))+
  theme_minimal()+
  xlab("Notas")+
  ylab("Frequência")+
  ggtitle("Histograma por turmas (Eng 2A e 2B)")

  
#histogram Eng
plot <- ggplot(data=notas, aes(x=notas)) + geom_histogram(breaks=seq(0,10,1),fill="royalblue", colour="black", alpha=.4, closed = c("left"))
plot <- plot + xlab("Notas")+
  ylab("Frequência")+
  ggtitle("Histograma das turmas Eng 2A e 2B")+
  theme(plot.title=element_text(size=rel(1), lineheight=.9,face="bold.italic", colour="black"))+
  theme(axis.title=element_text(size=12, lineheight=.9, face="bold", colour="black"))+
  stat_bin(bins=10, binwidth = 1,breaks=seq(0,10,1), geom="text", aes(label=..count..), vjust=-1, closed = c("left"))+ scale_x_continuous(limits = c(0,10), breaks=seq(0,10,1))+
  scale_y_continuous(expand = c(0,0),limits = c(0,max(ggplot_build(plot)$data[[1]]$count)*1.1),  breaks=seq(0,max(ggplot_build(plot)$data[[1]]$count)*1.1,10)) 
plot

a + geom_dotplot(aes(fill = turma),binpositions = "all")+
  theme_minimal()

# Box plot with mean points
e <- ggplot(notas, aes(x = turma, y = notas))
e + geom_boxplot(aes(color = turma,fill = turma)) +
stat_summary(fun.y = mean, geom = "point",
shape = 18, size = 4, color = "blue")+
  scale_color_brewer(palette="Dark2")+
  theme_minimal()

# Change point colors by dose (groups)
e + geom_jitter(aes(color = turma), position = position_jitter(0.3)) +
theme_minimal()

LS0tDQp0aXRsZTogIlByb2JhYmlsaWRhZGUgZSBFc3RhdMOtc3RpY2EgLSBFbmdlbmhhcmlhIDLCuiBhbm8gLSBBRURCIg0KYXV0aG9yOiAiUHJvZiBEci4gUm9iZXJ0byBDYW1wb3MgTGVvbmkiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojIyMgUmVzdWx0YWRvIGRhIGF2YWxpYcOnw6NvIGRlIFByb2JhYmlsaWRhZGUgZSBFc3RhdMOtc3RpY2EgLSBFbmdlbmhhcmlhIDJBIGUgMkIgLSBBRURCDQojIyMgMsK6IEJpbWVzdHJlDQoNCioqKg0KYGBge3J9DQpsaWJyYXJ5KHJlYWRyKQ0Kbm90YXMgPC0gcmVhZF9kZWxpbSgibm90YXMuQ1NWIiwgDQogICAgIjsiLCBlc2NhcGVfZG91YmxlID0gRkFMU0UsIGNvbF90eXBlcyA9IGNvbHMobm90YXMgPSBjb2xfbnVtYmVyKCkpLCANCiAgICB0cmltX3dzID0gVFJVRSkNCg0Kbm90YXMkbm90YXMgPC1ub3RhcyRub3Rhcy8xMA0KYGBgDQoNCiMgVGFidWxhw6fDo28gZGFzIE5vdGFzIHBvciBUdXJtYQ0KDQpgYGB7cn0NCmxpYnJhcnkocHN5Y2gpDQp0YWJsZShub3RhcykNCg0KbGlicmFyeSgiZ3JhcGhpY3MiKQ0KIyMjIE1vc2FpYyBwbG90IG9mIG9ic2VydmVkIHZhbHVlcw0KbW9zYWljcGxvdCh0YWJsZShub3RhcyksICBsYXM9MiwgY29sPSJzdGVlbGJsdWUiLA0KICAgICAgICAgICBtYWluID0gIlRhYnVsYcOnw6NvIGRhcyBub3RhcyIpDQoNCg0KDQpgYGANCg0KIyBTdW3DoXJpbyAtIFR1cm1hcyAyQSBlIDJCDQoNCmBgYHtyfQ0KDQpkZXNjcmliZUJ5KG5vdGFzJG5vdGFzLCBub3RhcyR0dXJtYSkNCg0KYGBgDQoNCg0KIyBTdW3DoXJpbyAtIFRvZG9zIG9zIGFsdW5vcw0KDQpgYGB7cn0NCnBzeWNoOjpkZXNjcmliZShub3RhcyRub3RhcykNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmEgPC0gZ2dwbG90KG5vdGFzLCBhZXMoeCA9IG5vdGFzKSkNCg0KI2hpc3RvZ3JhbSBFbmcNCiMgUG9zaXRpb24gYWRqdXN0bWVudDogImlkZW50aXR5IiAob3ZlcmxhaWQpDQphICsgZ2VvbV9oaXN0b2dyYW0oYnJlYWtzPXNlcSgwLDEwLDEpLGFlcyhjb2xvciA9IHR1cm1hKSwgZmlsbCA9ICJ3aGl0ZSIsIGFscGhhID0gMC40LHBvc2l0aW9uPSJpZGVudGl0eSIsIGNsb3NlZCA9IGMoImxlZnQiKSkrDQogIHNjYWxlX3hfY29udGludW91cyhsaW1pdHMgPSBjKDAsMTApLCBicmVha3M9c2VxKDAsMTAsMSkpKw0KICB0aGVtZV9taW5pbWFsKCkrDQogIHhsYWIoIk5vdGFzIikrDQogIHlsYWIoIkZyZXF1w6puY2lhIikrDQogIGdndGl0bGUoIkhpc3RvZ3JhbWEgcG9yIHR1cm1hcyAoRW5nIDJBIGUgMkIpIikNCiAgDQojaGlzdG9ncmFtIEVuZw0KcGxvdCA8LSBnZ3Bsb3QoZGF0YT1ub3RhcywgYWVzKHg9bm90YXMpKSArIGdlb21faGlzdG9ncmFtKGJyZWFrcz1zZXEoMCwxMCwxKSxmaWxsPSJyb3lhbGJsdWUiLCBjb2xvdXI9ImJsYWNrIiwgYWxwaGE9LjQsIGNsb3NlZCA9IGMoImxlZnQiKSkNCg0KcGxvdCA8LSBwbG90ICsgeGxhYigiTm90YXMiKSsNCiAgeWxhYigiRnJlcXXDqm5jaWEiKSsNCiAgZ2d0aXRsZSgiSGlzdG9ncmFtYSBkYXMgdHVybWFzIEVuZyAyQSBlIDJCIikrDQogIHRoZW1lKHBsb3QudGl0bGU9ZWxlbWVudF90ZXh0KHNpemU9cmVsKDEpLCBsaW5laGVpZ2h0PS45LGZhY2U9ImJvbGQuaXRhbGljIiwgY29sb3VyPSJibGFjayIpKSsNCiAgdGhlbWUoYXhpcy50aXRsZT1lbGVtZW50X3RleHQoc2l6ZT0xMiwgbGluZWhlaWdodD0uOSwgZmFjZT0iYm9sZCIsIGNvbG91cj0iYmxhY2siKSkrDQogIHN0YXRfYmluKGJpbnM9MTAsIGJpbndpZHRoID0gMSxicmVha3M9c2VxKDAsMTAsMSksIGdlb209InRleHQiLCBhZXMobGFiZWw9Li5jb3VudC4uKSwgdmp1c3Q9LTEsIGNsb3NlZCA9IGMoImxlZnQiKSkrIHNjYWxlX3hfY29udGludW91cyhsaW1pdHMgPSBjKDAsMTApLCBicmVha3M9c2VxKDAsMTAsMSkpKw0KICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gYygwLDApLGxpbWl0cyA9IGMoMCxtYXgoZ2dwbG90X2J1aWxkKHBsb3QpJGRhdGFbWzFdXSRjb3VudCkqMS4xKSwgIGJyZWFrcz1zZXEoMCxtYXgoZ2dwbG90X2J1aWxkKHBsb3QpJGRhdGFbWzFdXSRjb3VudCkqMS4xLDEwKSkgDQpwbG90DQoNCg0KDQphICsgZ2VvbV9kb3RwbG90KGFlcyhmaWxsID0gdHVybWEpLGJpbnBvc2l0aW9ucyA9ICJhbGwiKSsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCg0KIyBCb3ggcGxvdCB3aXRoIG1lYW4gcG9pbnRzDQplIDwtIGdncGxvdChub3RhcywgYWVzKHggPSB0dXJtYSwgeSA9IG5vdGFzKSkNCmUgKyBnZW9tX2JveHBsb3QoYWVzKGNvbG9yID0gdHVybWEsZmlsbCA9IHR1cm1hKSkgKw0Kc3RhdF9zdW1tYXJ5KGZ1bi55ID0gbWVhbiwgZ2VvbSA9ICJwb2ludCIsDQpzaGFwZSA9IDE4LCBzaXplID0gNCwgY29sb3IgPSAiYmx1ZSIpKw0KICBzY2FsZV9jb2xvcl9icmV3ZXIocGFsZXR0ZT0iRGFyazIiKSsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCiMgQ2hhbmdlIHBvaW50IGNvbG9ycyBieSBkb3NlIChncm91cHMpDQplICsgZ2VvbV9qaXR0ZXIoYWVzKGNvbG9yID0gdHVybWEpLCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcigwLjMpKSArDQp0aGVtZV9taW5pbWFsKCkNCg0KYGBgDQo=