library(foreign)
## Warning: package 'foreign' was built under R version 3.2.5
r=read.dta("C:/Users/BINH THANG/Dropbox/Korea/STudy/Thesis/data management/DataR/dataR5.dta")

r1 <- subset(r )

attach(r1)

r1$logC1=log10(r1$cost_inc)

r1$logC2=r1$cost_inc/1000

r1$highper[cost_inc<=62000] <- 0
r1$highper[cost_inc>62000] <- 1


r1$b16a[b16a == 5] <- 0


r1$freeEn[c9==1] <- 1
r1$freeEn[c9>1] <- 0




r1$h1[h1== 1] <- 1
r1$h1[h1== 2] <- 0


r1$c7ad[c7== 2] <- 0
r1$c7ad[c7== 1] <- 1
r1$c7ad[is.na(r1$c7)] <- 0


r1$ant[c5==1& c5==2 & c5==7 & c5==8 & c5==9] <- 0
r1$ant[c5==3|c5==4|c5==5] <- 1
r1$ant[is.na(r1$c5)] <- 0


r1$p1=r1$label1+r1$freeEn+r1$ant+r1$c7ad

r1$p[r1$p1==0] <- 0
r1$p[r1$p1==1] <- 1
r1$p[r1$p1>=2] <- 2

r1$wtp[cost_inc >=1] <- 0
r1$wtp[is.na(r1$wtp)] <- 1






newdata2=r1

attach(newdata2 )
## The following objects are masked from r1:
## 
##     a, a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a,
##     b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123, b6a,
##     b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9,
##     br, branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4,
##     c5, c6, c6a111, c7, c8, c9, clog, clog1, COST, cost_inc,
##     cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3, d3a, d4,
##     d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1, educ2, f1,
##     ghi1, ghi2, ghiro2, giadinhkoUH, group_age, group_age1, h1,
##     h10a, h10a1, h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4,
##     h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log,
##     h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000, ict1a, ict2a,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label_1, label1, label1a,
##     logb7, logC, logitCost, moneyspent, msdt, n01, n02, n03, n05,
##     n06, n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13,
##     n14, n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39,
##     n3posterb, n4, n40, n41, n42, n43, n44, n45, n46, n47, n48,
##     n49, n5, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59, n6,
##     n60, n61, n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a,
##     n66, n66a, n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8,
##     n88, n89, n8nha, n9, n97, n98, n99, n9khach, noE, noEnvi2,
##     occup1, poli4, poli4a, policy, policy_a, policyeffect,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     taxIn, ter_fa1, ter_in, tertile_fa, tertile_indi, test,
##     unitsdiffi1, var242, w1, w2, w3, w4

0.1 define varibles

newdata2$age_group=as.factor(newdata2$age_group)
newdata2$educ2=as.factor(newdata2$educ2)

newdata2$h1=as.factor(newdata2$h1)

newdata2$d1a=as.factor(newdata2$d1a)


newdata2$selfhealth=as.factor(newdata2$selfhealth)

newdata2$b18a=as.factor(newdata2$b18a)

newdata2$b16a=as.factor(newdata2$b16a)

newdata2$b6a=as.factor(newdata2$b6a)

newdata2$smostt=as.factor(newdata2$smostt)

newdata2$ter_in=as.factor(newdata2$ter_in)

newdata2$group_age1=as.factor(newdata2$group_age1)

newdata2$label1=as.factor(newdata2$label1)
newdata2$freeEn=as.factor(newdata2$freeEn)
newdata2$c7ad=as.factor(newdata2$c7ad)
newdata2$ant=as.factor(newdata2$ant)

newdata2$p=as.factor(newdata2$p)


newdata2$in00[newdata2$ter_in==1] <- 1
newdata2$in00[newdata2$ter_in==2 | ter_in==3] <- 0

newdata2$in00=as.factor(newdata2$in00)

attach(newdata2)
## The following objects are masked from newdata2 (pos = 3):
## 
##     a, a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123,
##     b6a, b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8,
##     b9, br, branch, branch1, branch2, branch3, c1, c2, c23a, c3,
##     c4, c5, c6, c6a111, c7, c7ad, c8, c9, clog, clog1, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, freeEn, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     highper, ict1a, ict2a, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label_1, label1, label1a, logb7, logC, logC1, logC2,
##     logitCost, moneyspent, msdt, n01, n02, n03, n05, n06, n07,
##     n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14, n15,
##     n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4, n40,
##     n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50, n51,
##     n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a,
##     n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67,
##     n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha,
##     n9, n97, n98, n99, n9khach, noE, noEnvi2, occup1, p, p1,
##     poli4, poli4a, policy, policy_a, policyeffect, reasons,
##     reasons1, s1, Screening, selfhealth, SH1, smostt, taxIn,
##     ter_fa1, ter_in, tertile_fa, tertile_indi, test, unitsdiffi1,
##     var242, w1, w2, w3, w4, wtp
## The following objects are masked from r1:
## 
##     a, a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a,
##     b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123, b6a,
##     b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9,
##     br, branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4,
##     c5, c6, c6a111, c7, c8, c9, clog, clog1, COST, cost_inc,
##     cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3, d3a, d4,
##     d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1, educ2, f1,
##     ghi1, ghi2, ghiro2, giadinhkoUH, group_age, group_age1, h1,
##     h10a, h10a1, h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4,
##     h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log,
##     h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000, ict1a, ict2a,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label_1, label1, label1a,
##     logb7, logC, logitCost, moneyspent, msdt, n01, n02, n03, n05,
##     n06, n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13,
##     n14, n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39,
##     n3posterb, n4, n40, n41, n42, n43, n44, n45, n46, n47, n48,
##     n49, n5, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59, n6,
##     n60, n61, n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a,
##     n66, n66a, n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8,
##     n88, n89, n8nha, n9, n97, n98, n99, n9khach, noE, noEnvi2,
##     occup1, poli4, poli4a, policy, policy_a, policyeffect,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     taxIn, ter_fa1, ter_in, tertile_fa, tertile_indi, test,
##     unitsdiffi1, var242, w1, w2, w3, w4

0.2 Install packages and library

library("brms")
## Warning: package 'brms' was built under R version 3.2.5
## Loading required package: Rcpp
## Warning: package 'Rcpp' was built under R version 3.2.5
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.2.5
## Loading 'brms' package (version 1.5.1). Useful instructions 
## can be found by typing help('brms'). A more detailed introduction 
## to the package is available through vignette('brms_overview').
library("caret")
## Warning: package 'caret' was built under R version 3.2.5
## Loading required package: lattice
library("coda")
## Warning: package 'coda' was built under R version 3.2.5
library("rstan", lib.loc="~/R/win-library/3.2")
## Warning: package 'rstan' was built under R version 3.2.5
## Loading required package: StanHeaders
## Warning: package 'StanHeaders' was built under R version 3.2.5
## rstan (Version 2.14.1, packaged: 2016-12-28 14:55:41 UTC, GitRev: 5fa1e80eb817)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## rstan_options(auto_write = TRUE)
## options(mc.cores = parallel::detectCores())
## 
## Attaching package: 'rstan'
## The following object is masked from 'package:coda':
## 
##     traceplot

0.3 Model 1.1: model for cost-single policy

data1=subset(newdata2, in00==0)

fit1 <- brm(bf(logC1~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, quantile = 0.25), data = data1, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.135 seconds (Warm-up)
##                3.013 seconds (Sampling)
##                6.148 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.775 seconds (Warm-up)
##                2.862 seconds (Sampling)
##                5.637 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.662 seconds (Warm-up)
##                2.322 seconds (Sampling)
##                4.984 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.724 seconds (Warm-up)
##                1.826 seconds (Sampling)
##                4.55 seconds (Total)
summary(fit1)
##  Family: asym_laplace (identity) 
## Formula: logC1 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a + label1 + freeEn + ant + c7ad 
##          quantile = 0.25
##    Data: data1 (Number of observations: 248) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept           4.47      0.05     4.36     4.57       2499    1
## age_groupgr3039     0.06      0.04    -0.01     0.14       2449    1
## age_groupgr4049     0.04      0.04    -0.04     0.12       1885    1
## age_groupgr5059    -0.03      0.05    -0.14     0.07       2241    1
## age_group60plus    -0.12      0.12    -0.38     0.10       2566    1
## educ22              0.05      0.04    -0.03     0.13       1988    1
## educ23              0.13      0.04     0.04     0.21       1718    1
## d1amarried         -0.01      0.04    -0.08     0.06       2575    1
## h11                 0.01      0.03    -0.05     0.06       2624    1
## selfhealthgood      0.09      0.03     0.04     0.14       3083    1
## smosttmedium        0.05      0.03    -0.02     0.11       2565    1
## smosttheavy         0.05      0.04    -0.02     0.12       2431    1
## b18abad             0.07      0.03     0.01     0.13       2443    1
## b6ayes              0.01      0.04    -0.07     0.09       2987    1
## label11            -0.08      0.04    -0.14    -0.01       2973    1
## freeEn1            -0.04      0.03    -0.11     0.02       2487    1
## ant1                0.02      0.03    -0.03     0.07       2733    1
## c7ad1               0.03      0.03    -0.02     0.08       3231    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma     0.07         0     0.06     0.08       3127    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit1)

#evidence ratio



hypothesis(fit1,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (age_groupgr3039) > 0     0.06      0.04        0      Inf      23.39 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0     0.04      0.04    -0.03      Inf       4.37 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.03      0.05    -0.13      Inf       0.37 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.12      0.12    -0.34      Inf        0.2 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0    -0.01      0.04    -0.07      Inf       0.57 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.01      0.03    -0.04      Inf       1.42 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0     0.05      0.04    -0.01      Inf       9.84 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (educ23) > 0     0.13      0.04     0.06      Inf     570.43 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0     0.09      0.03     0.05      Inf    1332.33 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     0.05      0.03    -0.01      Inf      10.94 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     0.05      0.04    -0.01      Inf       11.2 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (b18abad) > 0     0.07      0.03     0.02      Inf     101.56 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     0.01      0.04    -0.06      Inf       1.82 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
a=hypothesis(fit1,"label11>0",alpha=0.05)
hypothesis(fit1,"freeEn1>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (freeEn1) > 0    -0.04      0.03     -0.1      Inf       0.12 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"ant1>0",alpha=0.05)
## Hypothesis Tests for class b:
##            Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (ant1) > 0     0.02      0.03    -0.03      Inf       3.25 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"c7ad1>0",alpha=0.05)
## Hypothesis Tests for class b:
##             Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (c7ad1) > 0     0.03      0.03    -0.01      Inf       5.87 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit1)

0.4 Model 1.1: model for cost-single policy -0.5

fit1 <- brm(bf(logC2~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, quantile = 0.5), data = data1, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 7.684 seconds (Warm-up)
##                1.972 seconds (Sampling)
##                9.656 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 8.172 seconds (Warm-up)
##                1.969 seconds (Sampling)
##                10.141 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 6.51 seconds (Warm-up)
##                2.619 seconds (Sampling)
##                9.129 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 7.016 seconds (Warm-up)
##                2.651 seconds (Sampling)
##                9.667 seconds (Total)
summary(fit1)
##  Family: asym_laplace (identity) 
## Formula: logC2 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a + label1 + freeEn + ant + c7ad 
##          quantile = 0.5
##    Data: data1 (Number of observations: 248) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          39.66     12.43    15.13    64.05       2597    1
## age_groupgr3039    13.20      8.31    -2.38    29.95       2285    1
## age_groupgr4049     0.40      8.23   -15.91    16.49       2192    1
## age_groupgr5059     5.10     12.48   -17.95    30.85       2043    1
## age_group60plus     3.45     23.31   -35.47    59.16       2531    1
## educ22              2.43      9.12   -16.21    19.73       2063    1
## educ23             18.95     10.32    -1.95    38.40       2111    1
## d1amarried         -0.01      7.44   -14.42    14.40       2349    1
## h11                 2.44      6.16    -9.77    13.80       3100    1
## selfhealthgood     11.73      5.57     1.03    22.85       3198    1
## smosttmedium        0.90      7.26   -13.50    15.11       2891    1
## smosttheavy        11.69      7.92    -3.72    27.36       2767    1
## b18abad             7.88      6.27    -4.46    19.76       2805    1
## b6ayes              5.75      8.49   -10.59    22.68       3080    1
## label11           -12.85      8.10   -28.02     2.91       3043    1
## freeEn1            -6.84      7.04   -19.99     7.55       3343    1
## ant1                2.58      6.53    -9.98    15.60       2474    1
## c7ad1               8.62      7.49    -5.80    23.62       2871    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma    19.03      1.24    16.72    21.56       3984    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit1)

#evidence ratio



hypothesis(fit1,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0     13.2      8.31    -0.17      Inf      18.51 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0      0.4      8.23   -12.88      Inf       1.07 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0      5.1     12.48   -14.54      Inf       1.82 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0     3.45     23.31   -29.67      Inf       1.09 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0    -0.01      7.44   -12.14      Inf       0.98 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     2.44      6.16    -8.16      Inf       1.99 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0     2.43      9.12   -12.26      Inf       1.59 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (educ23) > 0    18.95     10.32     1.77      Inf      26.59 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0    11.73      5.57     2.74      Inf      65.67 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0      0.9      7.26   -11.07      Inf       1.23 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0    11.69      7.92    -0.96      Inf      13.76 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0     7.88      6.27    -2.57      Inf       8.73 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     5.75      8.49    -8.19      Inf       3.06 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"label11>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (label11) > 0   -12.85       8.1   -25.84      Inf       0.06 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"freeEn1>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (freeEn1) > 0    -6.84      7.04   -17.91      Inf        0.2 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"ant1>0",alpha=0.05)
## Hypothesis Tests for class b:
##            Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (ant1) > 0     2.58      6.53    -7.87      Inf       1.82 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"c7ad1>0",alpha=0.05)
## Hypothesis Tests for class b:
##             Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (c7ad1) > 0     8.62      7.49    -3.41      Inf       6.81 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit1)

0.5 Model 1.1: model for cost-single policy -0.75

fit1 <- brm(bf(logC2~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, quantile = 0.75), data = data1, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 9.705 seconds (Warm-up)
##                2.916 seconds (Sampling)
##                12.621 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 9.44 seconds (Warm-up)
##                3.003 seconds (Sampling)
##                12.443 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 9.242 seconds (Warm-up)
##                3.047 seconds (Sampling)
##                12.289 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 9.752 seconds (Warm-up)
##                3.68 seconds (Sampling)
##                13.432 seconds (Total)
summary(fit1)
##  Family: asym_laplace (identity) 
## Formula: logC2 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a + label1 + freeEn + ant + c7ad 
##          quantile = 0.75
##    Data: data1 (Number of observations: 248) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          87.82     17.81    54.40   123.82       2322    1
## age_groupgr3039     8.35     11.96   -14.98    32.43       2012    1
## age_groupgr4049    -1.17     12.92   -26.96    23.52       1869    1
## age_groupgr5059     6.03     18.80   -28.39    45.80       1795    1
## age_group60plus    32.48     42.03   -36.61   131.33       2607    1
## educ22            -13.15     14.08   -39.67    15.12       1933    1
## educ23              0.25     13.71   -26.61    26.99       2098    1
## d1amarried         -1.00     11.50   -23.17    21.52       1858    1
## h11                 3.54      8.40   -13.71    19.95       2734    1
## selfhealthgood     14.50      8.22    -1.80    29.99       2662    1
## smosttmedium       -7.05     11.04   -29.78    13.37       2470    1
## smosttheavy        11.29     11.50   -11.08    33.13       2393    1
## b18abad             7.91      9.07    -9.86    25.73       2813    1
## b6ayes             -0.15     12.12   -22.77    24.08       2852    1
## label11           -21.97     11.85   -44.34     2.60       2759    1
## freeEn1            10.40      9.42    -8.28    28.54       3038    1
## ant1                5.10      8.64   -11.96    22.09       2722    1
## c7ad1              19.19      8.19     2.97    35.06       2790    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma    19.02      1.19    16.84     21.5       3416    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit1)

#evidence ratio



hypothesis(fit1,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0     8.35     11.96   -11.26      Inf       3.08 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -1.17     12.92   -22.89      Inf       0.87 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0     6.03      18.8   -23.07      Inf        1.6 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    32.48     42.03   -27.17      Inf       3.69 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0       -1      11.5   -19.48      Inf       0.86 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     3.54       8.4   -10.96      Inf       2.11 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0   -13.15     14.08   -36.08      Inf       0.21 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     0.25     13.71      -22      Inf       1.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0     14.5      8.22     0.53      Inf      21.73 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0    -7.05     11.04   -25.78      Inf       0.38 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0    11.29      11.5    -7.61      Inf       5.06 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0     7.91      9.07    -6.89      Inf       4.17 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0    -0.15     12.12   -19.36      Inf       0.93 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"label11>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (label11) > 0   -21.97     11.85   -41.11      Inf       0.04 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"freeEn1>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (freeEn1) > 0     10.4      9.42    -5.33      Inf        6.3 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"ant1>0",alpha=0.05)
## Hypothesis Tests for class b:
##            Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (ant1) > 0      5.1      8.64    -9.01      Inf       2.62 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"c7ad1>0",alpha=0.05)
## Hypothesis Tests for class b:
##             Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (c7ad1) > 0    19.19      8.19     5.54      Inf     107.11 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit1)

WAIC(fit, fit10, fit100)

0.6 Model 1.2: model for cost-policy combination

fit2 <- brm(bf(logC2~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, quantile = 0.25), data = data1, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 7.202 seconds (Warm-up)
##                3.784 seconds (Sampling)
##                10.986 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 9.13 seconds (Warm-up)
##                3.674 seconds (Sampling)
##                12.804 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 10.485 seconds (Warm-up)
##                4.533 seconds (Sampling)
##                15.018 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 8.936 seconds (Warm-up)
##                3.78 seconds (Sampling)
##                12.716 seconds (Total)
summary(fit2)
##  Family: asym_laplace (identity) 
## Formula: logC2 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a * p 
##          quantile = 0.25
##    Data: data1 (Number of observations: 248) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          25.22      7.39    10.94    39.59       2716    1
## age_groupgr3039     6.57      5.15    -3.45    16.71       2542    1
## age_groupgr4049     3.99      5.58    -6.89    15.16       2326    1
## age_groupgr5059    -3.14      6.97   -16.91    10.78       2393    1
## age_group60plus   -11.17     13.94   -39.34    16.08       2589    1
## educ22              5.12      5.22    -5.13    15.62       2260    1
## educ23             14.98      5.90     3.24    26.50       2178    1
## d1amarried         -1.09      5.10   -10.91     9.09       2439    1
## h11                 0.62      3.88    -6.76     8.12       3203    1
## selfhealthgood     11.05      3.75     3.68    18.01       3173    1
## smosttmedium        3.92      4.75    -5.53    13.37       2693    1
## smosttheavy         5.39      4.99    -4.54    15.14       2578    1
## b18abad             9.38      4.00     1.40    17.08       2408    1
## b6ayes              2.12     16.38   -33.72    30.25       1396    1
## p1                 -1.64      4.63   -10.36     7.77       2471    1
## p2                 -1.79      5.17   -12.12     8.19       2329    1
## b6ayes:p1          -8.75     19.91   -45.86    31.90       1658    1
## b6ayes:p2           0.18     17.90   -32.91    37.30       1467    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma    11.84      0.81    10.37    13.56       4000    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit2)

#evidence ratio



hypothesis(fit2,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0     6.57      5.15    -1.76      Inf       9.18 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0     3.99      5.58    -5.12      Inf       3.23 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -3.14      6.97   -14.83      Inf       0.47 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0   -11.17     13.94   -34.24      Inf       0.25 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0    -1.09       5.1    -9.35      Inf       0.72 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.62      3.88    -5.76      Inf       1.31 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0     5.12      5.22    -3.35      Inf        5.6 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (educ23) > 0    14.98       5.9      5.3      Inf     132.33 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0    11.05      3.75     4.79      Inf        999 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     3.92      4.75     -3.8      Inf       4.11 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     5.39      4.99     -2.9      Inf       5.97 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (b18abad) > 0     9.38         4     2.78      Inf      87.89 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     2.12     16.38   -25.84      Inf        1.4 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p1) > 0    -1.64      4.63    -9.09      Inf       0.55 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p2) > 0    -1.79      5.17   -10.54      Inf       0.55 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p1) > 0    -8.75     19.91   -40.47      Inf       0.48 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p2) > 0     0.18      17.9   -27.56      Inf       0.93 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit2)

0.7 Model 1.2: model for cost-policy combination p=0.5

fit2 <- brm(bf(logC2~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, quantile = 0.5), data = data1, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 8.315 seconds (Warm-up)
##                2.557 seconds (Sampling)
##                10.872 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 8.807 seconds (Warm-up)
##                2.478 seconds (Sampling)
##                11.285 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 8.482 seconds (Warm-up)
##                3.971 seconds (Sampling)
##                12.453 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 8.313 seconds (Warm-up)
##                3.189 seconds (Sampling)
##                11.502 seconds (Total)
summary(fit2)
##  Family: asym_laplace (identity) 
## Formula: logC2 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a * p 
##          quantile = 0.5
##    Data: data1 (Number of observations: 248) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          41.48     12.27    17.20    64.92       2848    1
## age_groupgr3039    10.63      8.44    -5.30    27.89       2314    1
## age_groupgr4049     0.42      8.84   -17.16    17.28       1960    1
## age_groupgr5059     0.27     11.22   -21.03    23.82       2256    1
## age_group60plus    -2.26     23.12   -41.26    49.14       1959    1
## educ22              4.23      8.92   -13.60    21.24       2412    1
## educ23             18.22     10.34    -1.99    37.86       2323    1
## d1amarried         -2.12      7.53   -16.90    12.50       2447    1
## h11                 0.31      6.31   -12.12    12.89       2809    1
## selfhealthgood      9.96      5.87    -1.67    21.44       2885    1
## smosttmedium        1.12      7.25   -13.12    14.86       2657    1
## smosttheavy        11.69      7.69    -2.85    26.42       2458    1
## b18abad             7.57      6.42    -5.20    19.93       3468    1
## b6ayes              9.88     17.33   -25.16    43.61       1718    1
## p1                  6.87      8.52    -9.58    23.62       2450    1
## p2                  0.90      6.94   -13.01    14.14       2837    1
## b6ayes:p1         -14.70     23.52   -59.92    32.12       2181    1
## b6ayes:p2           1.00     23.04   -42.33    47.87       1686    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma    19.19      1.24     16.9    21.79       4000    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit2)

#evidence ratio



hypothesis(fit2,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0    10.63      8.44    -2.75      Inf       8.57 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0     0.42      8.84   -14.13      Inf        1.1 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0     0.27     11.22   -17.89      Inf       0.99 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -2.26     23.12   -35.69      Inf       0.71 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0    -2.12      7.53    -14.5      Inf       0.62 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.31      6.31   -10.11      Inf        1.1 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0     4.23      8.92   -10.63      Inf       2.21 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (educ23) > 0    18.22     10.34     1.16      Inf      24.48 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0     9.96      5.87     0.37      Inf      20.74 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     1.12      7.25   -10.98      Inf       1.32 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0    11.69      7.69     -0.9      Inf      14.09 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0     7.57      6.42    -3.02      Inf       7.33 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     9.88     17.33   -19.24      Inf       2.75 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p1) > 0     6.87      8.52    -6.78      Inf        3.7 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p2) > 0      0.9      6.94   -10.72      Inf       1.24 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p1) > 0    -14.7     23.52   -53.02      Inf       0.34 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p2) > 0        1     23.04   -35.66      Inf       1.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit2)

0.8 Model 1.2: model for cost-policy combination p=0.75

fit2 <- brm(bf(logC2~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, quantile = 0.75), data = data1, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 10.386 seconds (Warm-up)
##                3.5 seconds (Sampling)
##                13.886 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 11.013 seconds (Warm-up)
##                4.127 seconds (Sampling)
##                15.14 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 10.566 seconds (Warm-up)
##                3.357 seconds (Sampling)
##                13.923 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 10.849 seconds (Warm-up)
##                4.685 seconds (Sampling)
##                15.534 seconds (Total)
summary(fit2)
##  Family: asym_laplace (identity) 
## Formula: logC2 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a * p 
##          quantile = 0.75
##    Data: data1 (Number of observations: 248) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          78.96     18.63    43.44   115.84       1967    1
## age_groupgr3039     7.18     13.22   -18.82    32.58       1790    1
## age_groupgr4049    -1.28     13.56   -27.43    24.77       1525    1
## age_groupgr5059     5.53     21.10   -32.17    51.32       1728    1
## age_group60plus    38.53     46.81   -42.34   147.17       2048    1
## educ22             -0.41     13.41   -27.78    24.43       1762    1
## educ23              8.91     13.67   -18.04    35.44       1956    1
## d1amarried          0.26     12.13   -23.55    23.28       1734    1
## h11                -2.56      8.46   -18.60    14.65       2177    1
## selfhealthgood     11.66      8.30    -4.47    28.05       2114    1
## smosttmedium      -13.50     11.42   -36.37     9.15       2365    1
## smosttheavy        11.11     12.21   -12.68    35.24       2335    1
## b18abad            10.36      9.22    -7.52    28.35       2298    1
## b6ayes             -3.09     21.97   -41.79    45.41       1318    1
## p1                 24.69     10.99     3.35    46.10       1893    1
## p2                 10.28     10.40   -10.18    29.94       2176    1
## b6ayes:p1          -5.64     31.41   -68.34    57.02       1336    1
## b6ayes:p2          26.91     27.56   -30.15    78.63       1194    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma    19.06      1.27    16.78    21.75       3114    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit2)

#evidence ratio



hypothesis(fit2,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0     7.18     13.22   -14.54      Inf       2.37 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -1.28     13.56   -23.22      Inf       0.86 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0     5.53      21.1   -26.72      Inf       1.44 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    38.53     46.81   -32.39      Inf       4.15 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.26     12.13   -19.87      Inf       1.04 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0    -2.56      8.46   -16.08      Inf        0.6 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0    -0.41     13.41   -23.32      Inf          1 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     8.91     13.67   -13.52      Inf       2.81 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (selfhealthgood) > 0    11.66       8.3    -1.81      Inf      11.31 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0    -13.5     11.42   -32.34      Inf       0.13 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0    11.11     12.21    -9.15      Inf       4.56 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0    10.36      9.22    -4.83      Inf       6.35 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0    -3.09     21.97   -35.07      Inf       0.68 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (p1) > 0    24.69     10.99     6.87      Inf      80.63 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p2) > 0    10.28      10.4    -6.76      Inf       5.16 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p1) > 0    -5.64     31.41   -57.21      Inf       0.73 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p2) > 0    26.91     27.56   -18.89      Inf       5.68 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit2)

#Model 2: model for persistence

0.9 Model 2.1: single policy

prior=get_prior(formula=highper~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, family="bernoulli", data=data1)
## Warning: Rows containing NAs were excluded from the model
set.seed(1234) 
 
fit3=brm(formula=highper~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, family="bernoulli", data=data1, chains=5, iter=2000, warmup=1000, prior=prior)
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.766 seconds (Warm-up)
##                0.703 seconds (Sampling)
##                1.469 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.812 seconds (Warm-up)
##                0.719 seconds (Sampling)
##                1.531 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.844 seconds (Warm-up)
##                0.72 seconds (Sampling)
##                1.564 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.797 seconds (Warm-up)
##                0.757 seconds (Sampling)
##                1.554 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 5).
## 
## Chain 5, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 5, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 5, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 5, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 5, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 5, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 5, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 5, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 5, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 5, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 5, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 5, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.791 seconds (Warm-up)
##                0.718 seconds (Sampling)
##                1.509 seconds (Total)
summary(fit3)
##  Family: bernoulli (logit) 
## Formula: highper ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a + label1 + freeEn + ant + c7ad 
##    Data: data1 (Number of observations: 248) 
## Samples: 5 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 5000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          -1.59      0.64    -2.87    -0.33       5000    1
## age_groupgr3039     0.57      0.44    -0.29     1.42       3677    1
## age_groupgr4049     0.15      0.46    -0.75     1.07       3434    1
## age_groupgr5059     0.10      0.56    -0.98     1.19       3669    1
## age_group60plus    -0.27      1.04    -2.42     1.71       5000    1
## educ22             -0.23      0.42    -1.08     0.60       4297    1
## educ23              0.82      0.49    -0.13     1.78       4021    1
## d1amarried         -0.16      0.41    -0.95     0.63       3712    1
## h11                 0.26      0.31    -0.34     0.87       5000    1
## selfhealthgood      0.79      0.30     0.21     1.38       5000    1
## smosttmedium        0.45      0.39    -0.31     1.23       5000    1
## smosttheavy         0.80      0.40     0.00     1.61       4627    1
## b18abad             0.59      0.32    -0.02     1.22       5000    1
## b6ayes              0.45      0.44    -0.41     1.34       5000    1
## label11            -0.59      0.44    -1.47     0.26       5000    1
## freeEn1            -0.24      0.35    -0.94     0.44       5000    1
## ant1                0.13      0.30    -0.48     0.70       5000    1
## c7ad1               0.38      0.32    -0.23     1.01       5000    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(fit3,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0     0.57      0.44    -0.16      Inf       8.77 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0     0.15      0.46    -0.62      Inf       1.73 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0      0.1      0.56    -0.81      Inf       1.35 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.27      1.04    -2.02      Inf       0.68 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0    -0.16      0.41    -0.84      Inf       0.54 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.26      0.31    -0.24      Inf       3.86 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0    -0.23      0.42    -0.94      Inf       0.41 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (educ23) > 0     0.82      0.49     0.01      Inf      19.75 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0     0.79       0.3     0.31      Inf      237.1 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     0.45      0.39    -0.19      Inf       7.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (smosttheavy) > 0      0.8       0.4     0.15      Inf      38.37 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (b18abad) > 0     0.59      0.32     0.07      Inf      32.33 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     0.45      0.44    -0.26      Inf       5.63 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"label11>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (label11) > 0    -0.59      0.44    -1.33      Inf        0.1 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"freeEn1>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (freeEn1) > 0    -0.24      0.35    -0.82      Inf       0.32 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"ant1>0",alpha=0.05)
## Hypothesis Tests for class b:
##            Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (ant1) > 0     0.13       0.3    -0.37      Inf       2.01 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"c7ad1>0",alpha=0.05)
## Hypothesis Tests for class b:
##             Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (c7ad1) > 0     0.38      0.32    -0.13      Inf       7.65 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit3)

0.10 Model 2.2: policy combination: persistence

prior=get_prior(formula=highper~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, family="bernoulli", data=data1)
## Warning: Rows containing NAs were excluded from the model
set.seed(1234) 
 
fit4=brm(formula=highper~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, family="bernoulli", data=data1, chains=5, iter=2000, warmup=1000, prior=prior)
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.373 seconds (Warm-up)
##                1.202 seconds (Sampling)
##                2.575 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.361 seconds (Warm-up)
##                1.655 seconds (Sampling)
##                3.016 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.389 seconds (Warm-up)
##                1.149 seconds (Sampling)
##                2.538 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.369 seconds (Warm-up)
##                1.172 seconds (Sampling)
##                2.541 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 5).
## 
## Chain 5, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 5, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 5, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 5, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 5, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 5, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 5, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 5, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 5, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 5, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 5, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 5, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.295 seconds (Warm-up)
##                1.269 seconds (Sampling)
##                2.564 seconds (Total)
summary(fit4)
##  Family: bernoulli (logit) 
## Formula: highper ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a * p 
##    Data: data1 (Number of observations: 248) 
## Samples: 5 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 5000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          -1.60      0.66    -2.92    -0.32       5000    1
## age_groupgr3039     0.45      0.45    -0.41     1.36       4023    1
## age_groupgr4049     0.03      0.47    -0.92     0.94       3386    1
## age_groupgr5059    -0.04      0.56    -1.15     1.08       3441    1
## age_group60plus    -0.46      1.07    -2.70     1.52       5000    1
## educ22             -0.12      0.42    -0.91     0.70       4274    1
## educ23              0.92      0.50    -0.06     1.92       4179    1
## d1amarried         -0.14      0.40    -0.91     0.65       3769    1
## h11                 0.17      0.30    -0.42     0.74       5000    1
## selfhealthgood      0.72      0.30     0.12     1.31       5000    1
## smosttmedium        0.37      0.38    -0.36     1.15       4556    1
## smosttheavy         0.81      0.42     0.01     1.66       4455    1
## b18abad             0.52      0.31    -0.11     1.15       5000    1
## b6ayes              2.11      1.50    -0.41     5.46       2078    1
## p1                  0.35      0.38    -0.39     1.13       5000    1
## p2                  0.17      0.38    -0.58     0.91       5000    1
## b6ayes:p1          -2.57      1.70    -6.20     0.54       2373    1
## b6ayes:p2          -1.49      1.62    -5.09     1.28       2159    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(fit4,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0     0.45      0.45    -0.29      Inf       5.39 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0     0.03      0.47    -0.76      Inf       1.11 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.04      0.56    -0.98      Inf        0.9 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.46      1.07    -2.25      Inf       0.52 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0    -0.14       0.4    -0.78      Inf       0.58 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.17       0.3    -0.32      Inf       2.43 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0    -0.12      0.42    -0.81      Inf       0.63 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (educ23) > 0     0.92       0.5      0.1      Inf      29.67 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0     0.72       0.3     0.23      Inf     130.58 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     0.37      0.38    -0.24      Inf       4.99 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (smosttheavy) > 0     0.81      0.42     0.15      Inf      41.37 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0     0.52      0.31        0      Inf      18.92 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     2.11       1.5    -0.02      Inf      17.66 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p1) > 0     0.35      0.38    -0.27      Inf       4.62 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p2) > 0     0.17      0.38    -0.44      Inf       2.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"b6ayes:p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p1) > 0    -2.57       1.7    -5.48      Inf       0.06 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"b6ayes:p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p2) > 0    -1.49      1.62    -4.42      Inf       0.21 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit4)

1 model for income=1

1.1 Model 1.1: model for cost-single policy

data2=subset(newdata2, in00==1)
            
fit1 <- brm(bf(logC1~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, quantile = 0.25), data = data2, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.901 seconds (Warm-up)
##                3.05 seconds (Sampling)
##                5.951 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.234 seconds (Warm-up)
##                3.001 seconds (Sampling)
##                6.235 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.84 seconds (Warm-up)
##                2.316 seconds (Sampling)
##                5.156 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.896 seconds (Warm-up)
##                2.985 seconds (Sampling)
##                5.881 seconds (Total)
summary(fit1)
##  Family: asym_laplace (identity) 
## Formula: logC1 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a + label1 + freeEn + ant + c7ad 
##          quantile = 0.25
##    Data: data2 (Number of observations: 187) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept           4.61      0.07     4.47     4.74       2321    1
## age_groupgr3039    -0.07      0.09    -0.25     0.08       1853    1
## age_groupgr4049    -0.13      0.07    -0.26     0.00       1606    1
## age_groupgr5059    -0.13      0.07    -0.27     0.00       1569    1
## age_group60plus    -0.04      0.08    -0.19     0.12       1695    1
## educ22              0.00      0.04    -0.09     0.08       2218    1
## educ23              0.08      0.06    -0.03     0.19       1990    1
## d1amarried          0.01      0.06    -0.12     0.12       1396    1
## h11                 0.05      0.04    -0.03     0.12       2790    1
## selfhealthgood      0.07      0.03     0.00     0.14       3065    1
## smosttmedium        0.09      0.05    -0.01     0.19       1739    1
## smosttheavy         0.01      0.06    -0.10     0.12       1783    1
## b18abad             0.00      0.04    -0.07     0.07       2581    1
## b6ayes              0.03      0.04    -0.05     0.12       2998    1
## label11            -0.02      0.04    -0.10     0.07       2937    1
## freeEn1            -0.10      0.04    -0.18    -0.02       2359    1
## ant1                0.06      0.04    -0.01     0.13       2655    1
## c7ad1              -0.06      0.04    -0.13     0.01       2488    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma     0.07      0.01     0.06     0.08       3187    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit1)

#evidence ratio



hypothesis(fit1,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0    -0.07      0.09    -0.22      Inf       0.25 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -0.13      0.07    -0.24      Inf       0.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.13      0.07    -0.25      Inf       0.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.04      0.08    -0.17      Inf       0.48 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.01      0.06     -0.1      Inf       1.15 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.05      0.04    -0.01      Inf       9.64 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0        0      0.04    -0.07      Inf       0.86 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     0.08      0.06    -0.01      Inf      13.29 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0     0.07      0.03     0.01      Inf         49 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (smosttmedium) > 0     0.09      0.05     0.01      Inf       28.2 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     0.01      0.06    -0.08      Inf       1.31 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0        0      0.04    -0.06      Inf       0.95 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     0.03      0.04    -0.04      Inf       3.62 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"label11>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (label11) > 0    -0.02      0.04    -0.09      Inf        0.5 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"freeEn1>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (freeEn1) > 0     -0.1      0.04    -0.17      Inf       0.01 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"ant1>0",alpha=0.05)
## Hypothesis Tests for class b:
##            Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (ant1) > 0     0.06      0.04        0      Inf      19.83 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"c7ad1>0",alpha=0.05)
## Hypothesis Tests for class b:
##             Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (c7ad1) > 0    -0.06      0.04    -0.12      Inf       0.06 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit1)

1.2 Model 1.1: model for cost-single policy -0.5

fit1 <- brm(bf(logC1~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, quantile = 0.5), data = data2, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.406 seconds (Warm-up)
##                1.891 seconds (Sampling)
##                4.297 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.532 seconds (Warm-up)
##                2.953 seconds (Sampling)
##                5.485 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.766 seconds (Warm-up)
##                3.004 seconds (Sampling)
##                5.77 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.655 seconds (Warm-up)
##                2.268 seconds (Sampling)
##                4.923 seconds (Total)
summary(fit1)
##  Family: asym_laplace (identity) 
## Formula: logC1 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a + label1 + freeEn + ant + c7ad 
##          quantile = 0.5
##    Data: data2 (Number of observations: 187) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept           4.72      0.07     4.58     4.86       2644    1
## age_groupgr3039    -0.03      0.07    -0.17     0.11       1673    1
## age_groupgr4049    -0.13      0.07    -0.28     0.01       1157    1
## age_groupgr5059    -0.09      0.07    -0.23     0.03       1359    1
## age_group60plus    -0.08      0.08    -0.24     0.08       1134    1
## educ22              0.00      0.05    -0.10     0.09       2085    1
## educ23              0.09      0.06    -0.04     0.21       1730    1
## d1amarried          0.02      0.06    -0.10     0.14       1300    1
## h11                 0.06      0.04    -0.01     0.14       2861    1
## selfhealthgood      0.05      0.04    -0.02     0.12       2905    1
## smosttmedium        0.07      0.05    -0.02     0.16       2388    1
## smosttheavy         0.05      0.05    -0.05     0.15       2485    1
## b18abad             0.02      0.03    -0.05     0.09       2855    1
## b6ayes              0.07      0.05    -0.02     0.16       3048    1
## label11            -0.02      0.05    -0.12     0.09       2308    1
## freeEn1            -0.11      0.04    -0.19    -0.03       3188    1
## ant1                0.04      0.04    -0.04     0.11       2424    1
## c7ad1              -0.07      0.03    -0.14     0.00       3163    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma     0.09      0.01     0.08      0.1       3113    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit1)

#evidence ratio



hypothesis(fit1,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0    -0.03      0.07    -0.15      Inf       0.49 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -0.13      0.07    -0.25      Inf       0.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.09      0.07     -0.2      Inf       0.08 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.08      0.08    -0.22      Inf       0.17 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.02      0.06    -0.07      Inf       1.93 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (h11) > 0     0.06      0.04        0      Inf      23.39 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0        0      0.05    -0.08      Inf       0.95 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     0.09      0.06    -0.02      Inf        9.9 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (selfhealthgood) > 0     0.05      0.04    -0.01      Inf      13.04 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     0.07      0.05    -0.01      Inf      13.49 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     0.05      0.05    -0.03      Inf       5.14 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0     0.02      0.03    -0.04      Inf       2.13 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     0.07      0.05    -0.01      Inf      12.99 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"label11>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (label11) > 0    -0.02      0.05     -0.1      Inf        0.6 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"freeEn1>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (freeEn1) > 0    -0.11      0.04    -0.17      Inf          0 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"ant1>0",alpha=0.05)
## Hypothesis Tests for class b:
##            Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (ant1) > 0     0.04      0.04    -0.03      Inf       5.05 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"c7ad1>0",alpha=0.05)
## Hypothesis Tests for class b:
##             Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (c7ad1) > 0    -0.07      0.03    -0.13      Inf       0.02 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit1)

1.3 Model 1.1: model for cost-single policy -0.75

fit1 <- brm(bf(logC1~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, quantile = 0.75), data = data2, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.782 seconds (Warm-up)
##                3.484 seconds (Sampling)
##                6.266 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.703 seconds (Warm-up)
##                2.704 seconds (Sampling)
##                5.407 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.866 seconds (Warm-up)
##                2.475 seconds (Sampling)
##                5.341 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 2.812 seconds (Warm-up)
##                2.471 seconds (Sampling)
##                5.283 seconds (Total)
summary(fit1)
##  Family: asym_laplace (identity) 
## Formula: logC1 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a + label1 + freeEn + ant + c7ad 
##          quantile = 0.75
##    Data: data2 (Number of observations: 187) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept           4.95      0.08     4.79     5.10       1960    1
## age_groupgr3039    -0.03      0.08    -0.19     0.14       1937    1
## age_groupgr4049    -0.20      0.08    -0.34    -0.04       1413    1
## age_groupgr5059    -0.11      0.07    -0.25     0.04       1315    1
## age_group60plus    -0.14      0.09    -0.31     0.05       1501    1
## educ22             -0.04      0.05    -0.12     0.06       1898    1
## educ23              0.03      0.06    -0.09     0.16       1622    1
## d1amarried          0.01      0.06    -0.11     0.11       1595    1
## h11                 0.06      0.04    -0.02     0.14       2755    1
## selfhealthgood      0.04      0.04    -0.03     0.11       2865    1
## smosttmedium        0.02      0.05    -0.07     0.11       2275    1
## smosttheavy         0.10      0.05    -0.01     0.20       2489    1
## b18abad             0.03      0.04    -0.05     0.10       2272    1
## b6ayes              0.10      0.04     0.01     0.18       2716    1
## label11             0.06      0.05    -0.05     0.16       2356    1
## freeEn1            -0.07      0.05    -0.16     0.02       2451    1
## ant1               -0.01      0.04    -0.08     0.08       2665    1
## c7ad1              -0.10      0.05    -0.19    -0.01       2388    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma     0.07      0.01     0.06     0.09       3191    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit1)

#evidence ratio



hypothesis(fit1,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0    -0.03      0.08    -0.16      Inf       0.57 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0     -0.2      0.08    -0.32      Inf       0.01 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.11      0.07    -0.23      Inf       0.06 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.14      0.09    -0.28      Inf       0.07 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.01      0.06    -0.09      Inf       1.29 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.06      0.04        0      Inf      15.74 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0    -0.04      0.05    -0.11      Inf       0.27 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     0.03      0.06    -0.07      Inf       2.11 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (selfhealthgood) > 0     0.04      0.04    -0.02      Inf       6.12 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     0.02      0.05    -0.05      Inf       2.16 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (smosttheavy) > 0      0.1      0.05     0.01      Inf      26.03 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0     0.03      0.04    -0.04      Inf       2.96 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (b6ayes) > 0      0.1      0.04     0.02      Inf      65.67 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"label11>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (label11) > 0     0.06      0.05    -0.03      Inf       6.26 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"freeEn1>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (freeEn1) > 0    -0.07      0.05    -0.15      Inf       0.08 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"ant1>0",alpha=0.05)
## Hypothesis Tests for class b:
##            Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (ant1) > 0    -0.01      0.04    -0.07      Inf       0.79 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit1,"c7ad1>0",alpha=0.05)
## Hypothesis Tests for class b:
##             Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (c7ad1) > 0     -0.1      0.05    -0.17      Inf       0.02 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit1)

WAIC(fit, fit10, fit100)

1.4 Model 1.2: model for cost-policy combination

fit2 <- brm(bf(logC1~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, quantile = 0.25), data = data2, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.797 seconds (Warm-up)
##                3.219 seconds (Sampling)
##                7.016 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.985 seconds (Warm-up)
##                3.109 seconds (Sampling)
##                7.094 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.734 seconds (Warm-up)
##                3.242 seconds (Sampling)
##                6.976 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.994 seconds (Warm-up)
##                3.329 seconds (Sampling)
##                7.323 seconds (Total)
summary(fit2)
##  Family: asym_laplace (identity) 
## Formula: logC1 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a * p 
##          quantile = 0.25
##    Data: data2 (Number of observations: 187) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept           4.58      0.08     4.42     4.74       1487    1
## age_groupgr3039    -0.14      0.08    -0.30     0.02       1927    1
## age_groupgr4049    -0.17      0.07    -0.30    -0.03       1452    1
## age_groupgr5059    -0.15      0.07    -0.28    -0.02       1289    1
## age_group60plus    -0.06      0.07    -0.20     0.08       1453    1
## educ22              0.00      0.04    -0.09     0.08       1997    1
## educ23              0.05      0.06    -0.07     0.16       1669    1
## d1amarried          0.07      0.06    -0.05     0.19       1325    1
## h11                 0.05      0.04    -0.02     0.12       2679    1
## selfhealthgood      0.06      0.04    -0.01     0.14       2997    1
## smosttmedium        0.08      0.05    -0.01     0.18       1722    1
## smosttheavy         0.02      0.05    -0.09     0.12       1925    1
## b18abad            -0.03      0.03    -0.10     0.04       2995    1
## b6ayes              0.19      0.10    -0.01     0.39       1148    1
## p1                  0.01      0.05    -0.10     0.11       1182    1
## p2                  0.00      0.05    -0.11     0.10       1456    1
## b6ayes:p1          -0.14      0.12    -0.39     0.10       1209    1
## b6ayes:p2          -0.23      0.12    -0.46     0.01       1200    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma     0.07      0.01     0.06     0.08       3618    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit2)

#evidence ratio



hypothesis(fit2,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0    -0.14      0.08    -0.27      Inf       0.05 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -0.17      0.07    -0.28      Inf       0.01 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.15      0.07    -0.26      Inf       0.01 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.06      0.07    -0.18      Inf       0.23 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.07      0.06    -0.04      Inf       6.19 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.05      0.04    -0.01      Inf      12.42 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0        0      0.04    -0.07      Inf       0.93 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     0.05      0.06    -0.05      Inf       4.14 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (selfhealthgood) > 0     0.06      0.04        0      Inf      21.47 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (smosttmedium) > 0     0.08      0.05        0      Inf      22.12 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     0.02      0.05    -0.07      Inf       1.67 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0    -0.03      0.03    -0.09      Inf       0.22 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (b6ayes) > 0     0.19       0.1     0.02      Inf      30.75 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p1) > 0     0.01      0.05    -0.09      Inf       1.27 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p2) > 0        0      0.05    -0.09      Inf       1.07 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p1) > 0    -0.14      0.12    -0.35      Inf       0.15 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p2) > 0    -0.23      0.12    -0.42      Inf       0.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit2)

1.5 Model 1.2: model for cost-policy combination p=0.5

fit2 <- brm(bf(logC1~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, quantile = 0.5), data = data2, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.281 seconds (Warm-up)
##                3.657 seconds (Sampling)
##                6.938 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.624 seconds (Warm-up)
##                3.656 seconds (Sampling)
##                7.28 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.228 seconds (Warm-up)
##                2.928 seconds (Sampling)
##                6.156 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.279 seconds (Warm-up)
##                3.219 seconds (Sampling)
##                6.498 seconds (Total)
summary(fit2)
##  Family: asym_laplace (identity) 
## Formula: logC1 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a * p 
##          quantile = 0.5
##    Data: data2 (Number of observations: 187) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept           4.77      0.08     4.62     4.93       1673    1
## age_groupgr3039    -0.02      0.08    -0.18     0.13       1927    1
## age_groupgr4049    -0.16      0.07    -0.30    -0.01       1296    1
## age_groupgr5059    -0.09      0.07    -0.22     0.04       1404    1
## age_group60plus    -0.08      0.08    -0.23     0.07       1459    1
## educ22             -0.02      0.05    -0.11     0.08       2057    1
## educ23              0.07      0.06    -0.06     0.20       1528    1
## d1amarried          0.05      0.06    -0.06     0.16       1455    1
## h11                 0.05      0.04    -0.02     0.12       2919    1
## selfhealthgood      0.05      0.04    -0.02     0.12       2764    1
## smosttmedium        0.08      0.04    -0.01     0.16       2175    1
## smosttheavy         0.06      0.05    -0.04     0.15       2345    1
## b18abad            -0.02      0.04    -0.09     0.05       2858    1
## b6ayes              0.16      0.11    -0.05     0.36       1573    1
## p1                 -0.08      0.05    -0.18     0.02       2244    1
## p2                 -0.10      0.05    -0.19     0.00       2024    1
## b6ayes:p1          -0.09      0.13    -0.35     0.16       1724    1
## b6ayes:p2          -0.12      0.13    -0.36     0.12       1593    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma     0.09      0.01     0.08     0.11       3596    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit2)

#evidence ratio



hypothesis(fit2,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0    -0.02      0.08    -0.16      Inf       0.72 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -0.16      0.07    -0.28      Inf       0.02 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.09      0.07    -0.21      Inf        0.1 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.08      0.08    -0.21      Inf       0.19 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.05      0.06    -0.05      Inf       4.01 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.05      0.04    -0.01      Inf      13.23 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0    -0.02      0.05    -0.09      Inf       0.57 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     0.07      0.06    -0.04      Inf       5.85 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (selfhealthgood) > 0     0.05      0.04    -0.01      Inf      10.24 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (smosttmedium) > 0     0.08      0.04        0      Inf      19.62 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     0.06      0.05    -0.02      Inf       8.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0    -0.02      0.04    -0.08      Inf       0.41 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     0.16      0.11    -0.02      Inf      12.75 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p1) > 0    -0.08      0.05    -0.17      Inf       0.06 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p2) > 0     -0.1      0.05    -0.17      Inf       0.02 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p1) > 0    -0.09      0.13    -0.31      Inf       0.33 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p2) > 0    -0.12      0.13    -0.32      Inf       0.22 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit2)

1.6 Model 1.2: model for cost-policy combination p=0.75

fit2 <- brm(bf(logC1~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, quantile = 0.75), data = data2, 
            family = asym_laplace())
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.921 seconds (Warm-up)
##                2.72 seconds (Sampling)
##                6.641 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.562 seconds (Warm-up)
##                2.641 seconds (Sampling)
##                6.203 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.625 seconds (Warm-up)
##                3.672 seconds (Sampling)
##                7.297 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'asym_laplace(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 3.671 seconds (Warm-up)
##                3.957 seconds (Sampling)
##                7.628 seconds (Total)
summary(fit2)
##  Family: asym_laplace (identity) 
## Formula: logC1 ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a * p 
##          quantile = 0.75
##    Data: data2 (Number of observations: 187) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 4000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept           4.99      0.09     4.82     5.18       1747    1
## age_groupgr3039    -0.06      0.08    -0.20     0.11       1813    1
## age_groupgr4049    -0.24      0.07    -0.37    -0.10       1577    1
## age_groupgr5059    -0.14      0.07    -0.27    -0.01       1558    1
## age_group60plus    -0.13      0.08    -0.29     0.04       1736    1
## educ22             -0.06      0.05    -0.15     0.03       1930    1
## educ23              0.02      0.06    -0.11     0.15       1762    1
## d1amarried          0.03      0.05    -0.08     0.13       1750    1
## h11                 0.06      0.04    -0.02     0.14       2837    1
## selfhealthgood      0.03      0.03    -0.04     0.10       2573    1
## smosttmedium       -0.01      0.04    -0.09     0.07       2438    1
## smosttheavy         0.06      0.05    -0.05     0.17       2303    1
## b18abad             0.01      0.04    -0.06     0.08       2810    1
## b6ayes              0.22      0.11     0.01     0.44       1476    1
## p1                 -0.02      0.05    -0.13     0.08       1824    1
## p2                 -0.06      0.05    -0.17     0.03       2016    1
## b6ayes:p1          -0.18      0.14    -0.45     0.09       1608    1
## b6ayes:p2          -0.15      0.12    -0.40     0.09       1533    1
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma     0.07      0.01     0.06     0.09       3748    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(fit2)

#evidence ratio



hypothesis(fit2,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0    -0.06      0.08    -0.18      Inf       0.28 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -0.24      0.07    -0.35      Inf          0 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.14      0.07    -0.25      Inf       0.02 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.13      0.08    -0.26      Inf       0.07 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.03      0.05    -0.06      Inf       2.28 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (h11) > 0     0.06      0.04    -0.01      Inf      12.29 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0    -0.06      0.05    -0.13      Inf       0.13 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     0.02      0.06    -0.08      Inf       1.68 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (selfhealthgood) > 0     0.03      0.03    -0.02      Inf       4.38 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0    -0.01      0.04    -0.08      Inf       0.75 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     0.06      0.05    -0.03      Inf       6.55 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0     0.01      0.04    -0.05      Inf       1.53 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (b6ayes) > 0     0.22      0.11     0.04      Inf      52.33 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p1) > 0    -0.02      0.05    -0.11      Inf       0.58 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p2) > 0    -0.06      0.05    -0.15      Inf       0.11 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p1) > 0    -0.18      0.14    -0.41      Inf        0.1 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit2,"b6ayes:p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p2) > 0    -0.15      0.12    -0.36      Inf       0.12 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit2)

#Model 2: model for persistence

1.7 Model 2.1: single policy

prior=get_prior(formula=highper~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, family="bernoulli", data=data2)
## Warning: Rows containing NAs were excluded from the model
set.seed(1234) 
 
fit3=brm(formula=highper~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a+label1+freeEn+ant+c7ad, family="bernoulli", data=data2, chains=5, iter=2000, warmup=1000, prior=prior)
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.656 seconds (Warm-up)
##                0.625 seconds (Sampling)
##                1.281 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.656 seconds (Warm-up)
##                0.625 seconds (Sampling)
##                1.281 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.656 seconds (Warm-up)
##                0.641 seconds (Sampling)
##                1.297 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.656 seconds (Warm-up)
##                0.616 seconds (Sampling)
##                1.272 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 5).
## 
## Chain 5, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 5, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 5, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 5, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 5, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 5, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 5, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 5, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 5, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 5, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 5, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 5, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.662 seconds (Warm-up)
##                0.688 seconds (Sampling)
##                1.35 seconds (Total)
summary(fit3)
##  Family: bernoulli (logit) 
## Formula: highper ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a + label1 + freeEn + ant + c7ad 
##    Data: data2 (Number of observations: 187) 
## Samples: 5 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 5000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          -1.25      0.74    -2.73     0.17       4201    1
## age_groupgr3039    -0.14      0.80    -1.66     1.41       3793    1
## age_groupgr4049    -1.48      0.78    -3.07     0.01       3110    1
## age_groupgr5059    -0.90      0.67    -2.25     0.42       2859    1
## age_group60plus    -0.88      0.82    -2.55     0.72       2919    1
## educ22              0.09      0.46    -0.80     0.96       4150    1
## educ23              1.10      0.64    -0.14     2.36       3693    1
## d1amarried          0.32      0.60    -0.83     1.52       2886    1
## h11                 0.78      0.37     0.06     1.51       5000    1
## selfhealthgood      0.52      0.36    -0.18     1.24       5000    1
## smosttmedium        0.46      0.50    -0.52     1.45       4335    1
## smosttheavy         0.63      0.51    -0.36     1.65       4372    1
## b18abad             0.29      0.40    -0.47     1.07       5000    1
## b6ayes              0.89      0.46    -0.02     1.80       5000    1
## label11            -0.17      0.49    -1.12     0.80       5000    1
## freeEn1            -1.16      0.43    -2.03    -0.30       5000    1
## ant1                0.26      0.41    -0.52     1.07       5000    1
## c7ad1              -0.39      0.37    -1.13     0.32       5000    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(fit3,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0    -0.14       0.8    -1.43      Inf       0.76 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -1.48      0.78     -2.8      Inf       0.03 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0     -0.9      0.67    -2.04      Inf       0.09 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.88      0.82    -2.24      Inf       0.16 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.32       0.6    -0.64      Inf       2.33 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (h11) > 0     0.78      0.37     0.17      Inf      57.14 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0     0.09      0.46    -0.65      Inf       1.39 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (educ23) > 0      1.1      0.64     0.06      Inf      23.15 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (selfhealthgood) > 0     0.52      0.36    -0.06      Inf      13.37 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     0.46       0.5    -0.36      Inf       4.75 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     0.63      0.51     -0.2      Inf       8.19 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0     0.29       0.4    -0.35      Inf       3.16 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (b6ayes) > 0     0.89      0.46     0.15      Inf      34.97 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"label11>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (label11) > 0    -0.17      0.49    -0.98      Inf       0.56 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"freeEn1>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (freeEn1) > 0    -1.16      0.43    -1.87      Inf          0 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"ant1>0",alpha=0.05)
## Hypothesis Tests for class b:
##            Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (ant1) > 0     0.26      0.41    -0.39      Inf       2.77 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit3,"c7ad1>0",alpha=0.05)
## Hypothesis Tests for class b:
##             Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (c7ad1) > 0    -0.39      0.37    -1.01      Inf       0.17 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit3)

1.8 Model 2.2: policy combination: persistence

prior=get_prior(formula=highper~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, family="bernoulli", data=data2)
## Warning: Rows containing NAs were excluded from the model
set.seed(1234) 
 
fit4=brm(formula=highper~age_group+educ2+d1a+h1+selfhealth+smostt
               +b18a+b6a*p, family="bernoulli", data=data2, chains=5, iter=2000, warmup=1000, prior=prior)
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.884 seconds (Warm-up)
##                0.766 seconds (Sampling)
##                1.65 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.953 seconds (Warm-up)
##                0.907 seconds (Sampling)
##                1.86 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.906 seconds (Warm-up)
##                0.906 seconds (Sampling)
##                1.812 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.906 seconds (Warm-up)
##                0.938 seconds (Sampling)
##                1.844 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 5).
## 
## Chain 5, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 5, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 5, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 5, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 5, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 5, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 5, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 5, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 5, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 5, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 5, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 5, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.922 seconds (Warm-up)
##                0.829 seconds (Sampling)
##                1.751 seconds (Total)
summary(fit4)
##  Family: bernoulli (logit) 
## Formula: highper ~ age_group + educ2 + d1a + h1 + selfhealth + smostt + b18a + b6a * p 
##    Data: data2 (Number of observations: 187) 
## Samples: 5 chains, each with iter = 2000; warmup = 1000; thin = 1; 
##          total post-warmup samples = 5000
##    WAIC: Not computed
##  
## Population-Level Effects: 
##                 Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept          -0.73      0.80    -2.29     0.84       5000    1
## age_groupgr3039     0.06      0.78    -1.45     1.63       3349    1
## age_groupgr4049    -1.56      0.78    -3.17    -0.08       3006    1
## age_groupgr5059    -0.83      0.70    -2.23     0.51       2686    1
## age_group60plus    -0.78      0.83    -2.45     0.84       2982    1
## educ22              0.02      0.47    -0.89     0.93       5000    1
## educ23              0.79      0.63    -0.41     2.06       4622    1
## d1amarried          0.39      0.60    -0.75     1.58       3138    1
## h11                 0.80      0.37     0.06     1.53       5000    1
## selfhealthgood      0.52      0.37    -0.20     1.24       5000    1
## smosttmedium        0.52      0.52    -0.49     1.58       5000    1
## smosttheavy         0.69      0.53    -0.33     1.74       5000    1
## b18abad             0.10      0.38    -0.62     0.84       5000    1
## b6ayes              0.82      1.08    -1.21     3.03       2777    1
## p1                 -1.21      0.54    -2.31    -0.17       5000    1
## p2                 -0.86      0.50    -1.87     0.12       5000    1
## b6ayes:p1           0.93      1.38    -1.85     3.66       3837    1
## b6ayes:p2          -0.55      1.26    -3.16     1.88       3484    1
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(fit4,"age_groupgr3039>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr3039) > 0     0.06      0.78    -1.21      Inf       1.14 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"age_groupgr4049 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr4049) > 0    -1.56      0.78    -2.87      Inf       0.02 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"age_groupgr5059 >0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_groupgr5059) > 0    -0.83       0.7    -1.99      Inf       0.13 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"age_group60plus>0",alpha=0.05)
## Hypothesis Tests for class b:
##                       Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (age_group60plus) > 0    -0.78      0.83    -2.16      Inf       0.22 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"d1amarried>0",alpha=0.05)
## Hypothesis Tests for class b:
##                  Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (d1amarried) > 0     0.39       0.6    -0.57      Inf       2.81 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"h11>0",alpha=0.05)
## Hypothesis Tests for class b:
##           Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## (h11) > 0      0.8      0.37      0.2      Inf      58.52 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"educ22>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ22) > 0     0.02      0.47    -0.76      Inf       1.07 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"educ23>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (educ23) > 0     0.79      0.63    -0.23      Inf       8.54 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"selfhealthgood>0",alpha=0.05)
## Hypothesis Tests for class b:
##                      Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (selfhealthgood) > 0     0.52      0.37    -0.08      Inf      12.12 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"smosttmedium>0",alpha=0.05)
## Hypothesis Tests for class b:
##                    Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttmedium) > 0     0.52      0.52     -0.3      Inf       5.22 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"smosttheavy>0",alpha=0.05)
## Hypothesis Tests for class b:
##                   Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (smosttheavy) > 0     0.69      0.53    -0.17      Inf       9.59 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"b18abad>0",alpha=0.05)
## Hypothesis Tests for class b:
##               Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b18abad) > 0      0.1      0.38    -0.51      Inf       1.52 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"b6ayes>0",alpha=0.05)
## Hypothesis Tests for class b:
##              Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes) > 0     0.82      1.08    -0.89      Inf       3.65 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p1) > 0    -1.21      0.54    -2.14      Inf       0.01 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (p2) > 0    -0.86       0.5     -1.7      Inf       0.04 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"b6ayes:p1>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p1) > 0     0.93      1.38    -1.34      Inf       2.97 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
hypothesis(fit4,"b6ayes:p2>0",alpha=0.05)
## Hypothesis Tests for class b:
##                 Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## (b6ayes:p2) > 0    -0.55      1.26    -2.65      Inf        0.5 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
plot(fit4)

LS0tDQp0aXRsZTogJ2FsbCBtb2RlbHM6IGNpZ2FyZXR0ZSBwcmljZScNCmF1dGhvcjogIkJpbmggVGhhbmcsIFRyYW4iDQpkYXRlOiAiNSBKdWx5IDIwMTciDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0aGVtZTogam91cm5hbA0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KLS0tDQpgYGB7ciB9DQpsaWJyYXJ5KGZvcmVpZ24pDQpyPXJlYWQuZHRhKCJDOi9Vc2Vycy9CSU5IIFRIQU5HL0Ryb3Bib3gvS29yZWEvU1R1ZHkvVGhlc2lzL2RhdGEgbWFuYWdlbWVudC9EYXRhUi9kYXRhUjUuZHRhIikNCg0KcjEgPC0gc3Vic2V0KHIgKQ0KDQphdHRhY2gocjEpDQoNCnIxJGxvZ0MxPWxvZzEwKHIxJGNvc3RfaW5jKQ0KDQpyMSRsb2dDMj1yMSRjb3N0X2luYy8xMDAwDQoNCnIxJGhpZ2hwZXJbY29zdF9pbmM8PTYyMDAwXSA8LSAwDQpyMSRoaWdocGVyW2Nvc3RfaW5jPjYyMDAwXSA8LSAxDQoNCg0KcjEkYjE2YVtiMTZhID09IDVdIDwtIDANCg0KDQpyMSRmcmVlRW5bYzk9PTFdIDwtIDENCnIxJGZyZWVFbltjOT4xXSA8LSAwDQoNCg0KDQoNCnIxJGgxW2gxPT0gMV0gPC0gMQ0KcjEkaDFbaDE9PSAyXSA8LSAwDQoNCg0KcjEkYzdhZFtjNz09IDJdIDwtIDANCnIxJGM3YWRbYzc9PSAxXSA8LSAxDQpyMSRjN2FkW2lzLm5hKHIxJGM3KV0gPC0gMA0KDQoNCnIxJGFudFtjNT09MSYgYzU9PTIgJiBjNT09NyAmIGM1PT04ICYgYzU9PTldIDwtIDANCnIxJGFudFtjNT09M3xjNT09NHxjNT09NV0gPC0gMQ0KcjEkYW50W2lzLm5hKHIxJGM1KV0gPC0gMA0KDQoNCnIxJHAxPXIxJGxhYmVsMStyMSRmcmVlRW4rcjEkYW50K3IxJGM3YWQNCg0KcjEkcFtyMSRwMT09MF0gPC0gMA0KcjEkcFtyMSRwMT09MV0gPC0gMQ0KcjEkcFtyMSRwMT49Ml0gPC0gMg0KDQpyMSR3dHBbY29zdF9pbmMgPj0xXSA8LSAwDQpyMSR3dHBbaXMubmEocjEkd3RwKV0gPC0gMQ0KDQoNCg0KDQoNCg0KbmV3ZGF0YTI9cjENCg0KYXR0YWNoKG5ld2RhdGEyICkNCmBgYA0KDQojIyBkZWZpbmUgdmFyaWJsZXMNCg0KDQoNCmBgYHtyfQ0KbmV3ZGF0YTIkYWdlX2dyb3VwPWFzLmZhY3RvcihuZXdkYXRhMiRhZ2VfZ3JvdXApDQpuZXdkYXRhMiRlZHVjMj1hcy5mYWN0b3IobmV3ZGF0YTIkZWR1YzIpDQoNCm5ld2RhdGEyJGgxPWFzLmZhY3RvcihuZXdkYXRhMiRoMSkNCg0KbmV3ZGF0YTIkZDFhPWFzLmZhY3RvcihuZXdkYXRhMiRkMWEpDQoNCg0KbmV3ZGF0YTIkc2VsZmhlYWx0aD1hcy5mYWN0b3IobmV3ZGF0YTIkc2VsZmhlYWx0aCkNCg0KbmV3ZGF0YTIkYjE4YT1hcy5mYWN0b3IobmV3ZGF0YTIkYjE4YSkNCg0KbmV3ZGF0YTIkYjE2YT1hcy5mYWN0b3IobmV3ZGF0YTIkYjE2YSkNCg0KbmV3ZGF0YTIkYjZhPWFzLmZhY3RvcihuZXdkYXRhMiRiNmEpDQoNCm5ld2RhdGEyJHNtb3N0dD1hcy5mYWN0b3IobmV3ZGF0YTIkc21vc3R0KQ0KDQpuZXdkYXRhMiR0ZXJfaW49YXMuZmFjdG9yKG5ld2RhdGEyJHRlcl9pbikNCg0KbmV3ZGF0YTIkZ3JvdXBfYWdlMT1hcy5mYWN0b3IobmV3ZGF0YTIkZ3JvdXBfYWdlMSkNCg0KbmV3ZGF0YTIkbGFiZWwxPWFzLmZhY3RvcihuZXdkYXRhMiRsYWJlbDEpDQpuZXdkYXRhMiRmcmVlRW49YXMuZmFjdG9yKG5ld2RhdGEyJGZyZWVFbikNCm5ld2RhdGEyJGM3YWQ9YXMuZmFjdG9yKG5ld2RhdGEyJGM3YWQpDQpuZXdkYXRhMiRhbnQ9YXMuZmFjdG9yKG5ld2RhdGEyJGFudCkNCg0KbmV3ZGF0YTIkcD1hcy5mYWN0b3IobmV3ZGF0YTIkcCkNCg0KDQpuZXdkYXRhMiRpbjAwW25ld2RhdGEyJHRlcl9pbj09MV0gPC0gMQ0KbmV3ZGF0YTIkaW4wMFtuZXdkYXRhMiR0ZXJfaW49PTIgfCB0ZXJfaW49PTNdIDwtIDANCg0KbmV3ZGF0YTIkaW4wMD1hcy5mYWN0b3IobmV3ZGF0YTIkaW4wMCkNCg0KYXR0YWNoKG5ld2RhdGEyKQ0KDQpgYGANCg0KDQoNCg0KDQoNCg0KIyNJbnN0YWxsICBwYWNrYWdlcyBhbmQgbGlicmFyeQ0KDQpgYGB7cn0NCmxpYnJhcnkoImJybXMiKQ0KbGlicmFyeSgiY2FyZXQiKQ0KbGlicmFyeSgiY29kYSIpDQoNCmxpYnJhcnkoInJzdGFuIiwgbGliLmxvYz0ifi9SL3dpbi1saWJyYXJ5LzMuMiIpDQoNCg0KYGBgDQoNCg0KDQojI01vZGVsIDEuMTogbW9kZWwgZm9yIGNvc3Qtc2luZ2xlIHBvbGljeSANCg0KYGBge3J9DQoNCmRhdGExPXN1YnNldChuZXdkYXRhMiwgaW4wMD09MCkNCg0KZml0MSA8LSBicm0oYmYobG9nQzF+YWdlX2dyb3VwK2VkdWMyK2QxYStoMStzZWxmaGVhbHRoK3Ntb3N0dA0KICAgICAgICAgICAgICAgK2IxOGErYjZhK2xhYmVsMStmcmVlRW4rYW50K2M3YWQsIHF1YW50aWxlID0gMC4yNSksIGRhdGEgPSBkYXRhMSwgDQogICAgICAgICAgICBmYW1pbHkgPSBhc3ltX2xhcGxhY2UoKSkNCnN1bW1hcnkoZml0MSkNCg0KbWFyZ2luYWxfZWZmZWN0cyhmaXQxKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQoNCmh5cG90aGVzaXMoZml0MSwic2VsZmhlYWx0aGdvb2Q+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJzbW9zdHRtZWRpdW0+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwic21vc3R0aGVhdnk+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJiMThhYmFkPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MSwiYjZheWVzPjAiLGFscGhhPTAuMDUpDQoNCmE9aHlwb3RoZXNpcyhmaXQxLCJsYWJlbDExPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImZyZWVFbjE+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYW50MT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJjN2FkMT4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDEpDQoNCmBgYA0KDQoNCg0KIyNNb2RlbCAxLjE6IG1vZGVsIGZvciBjb3N0LXNpbmdsZSBwb2xpY3kgLTAuNQ0KDQpgYGB7cn0NCmZpdDEgPC0gYnJtKGJmKGxvZ0MyfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YStsYWJlbDErZnJlZUVuK2FudCtjN2FkLCBxdWFudGlsZSA9IDAuNSksIGRhdGEgPSBkYXRhMSwgDQogICAgICAgICAgICBmYW1pbHkgPSBhc3ltX2xhcGxhY2UoKSkNCnN1bW1hcnkoZml0MSkNCg0KbWFyZ2luYWxfZWZmZWN0cyhmaXQxKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQpoeXBvdGhlc2lzKGZpdDEsInNlbGZoZWFsdGhnb29kPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MSwic21vc3R0bWVkaXVtPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsInNtb3N0dGhlYXZ5PjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MSwiYjE4YWJhZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImI2YXllcz4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImxhYmVsMTE+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiZnJlZUVuMT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJhbnQxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImM3YWQxPjAiLGFscGhhPTAuMDUpDQoNCnBsb3QoZml0MSkNCg0KYGBgDQoNCg0KDQojI01vZGVsIDEuMTogbW9kZWwgZm9yIGNvc3Qtc2luZ2xlIHBvbGljeSAtMC43NQ0KDQpgYGB7cn0NCmZpdDEgPC0gYnJtKGJmKGxvZ0MyfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YStsYWJlbDErZnJlZUVuK2FudCtjN2FkLCBxdWFudGlsZSA9IDAuNzUpLCBkYXRhID0gZGF0YTEsIA0KICAgICAgICAgICAgZmFtaWx5ID0gYXN5bV9sYXBsYWNlKCkpDQpzdW1tYXJ5KGZpdDEpDQoNCm1hcmdpbmFsX2VmZmVjdHMoZml0MSkNCg0KI2V2aWRlbmNlIHJhdGlvDQoNCg0KDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyMzAzOT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJhZ2VfZ3JvdXBncjQwNDkgPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyNTA1OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwNjBwbHVzPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MSwiZDFhbWFycmllZD4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJoMTE+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJlZHVjMjI+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiZWR1YzIzPjAiLGFscGhhPTAuMDUpDQoNCg0KaHlwb3RoZXNpcyhmaXQxLCJzZWxmaGVhbHRoZ29vZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsInNtb3N0dG1lZGl1bT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJzbW9zdHRoZWF2eT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImIxOGFiYWQ+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJiNmF5ZXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJsYWJlbDExPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImZyZWVFbjE+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYW50MT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJjN2FkMT4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDEpDQoNCmBgYA0KDQpXQUlDKGZpdCwgZml0MTAsIGZpdDEwMCkNCg0KIyNNb2RlbCAxLjI6IG1vZGVsIGZvciBjb3N0LXBvbGljeSBjb21iaW5hdGlvbg0KYGBge3J9DQpmaXQyIDwtIGJybShiZihsb2dDMn5hZ2VfZ3JvdXArZWR1YzIrZDFhK2gxK3NlbGZoZWFsdGgrc21vc3R0DQogICAgICAgICAgICAgICArYjE4YStiNmEqcCwgcXVhbnRpbGUgPSAwLjI1KSwgZGF0YSA9IGRhdGExLCANCiAgICAgICAgICAgIGZhbWlseSA9IGFzeW1fbGFwbGFjZSgpKQ0Kc3VtbWFyeShmaXQyKQ0KbWFyZ2luYWxfZWZmZWN0cyhmaXQyKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQyLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQpoeXBvdGhlc2lzKGZpdDIsInNlbGZoZWFsdGhnb29kPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0Miwic21vc3R0bWVkaXVtPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInNtb3N0dGhlYXZ5PjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjE4YWJhZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllcz4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsInAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInAyPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjZheWVzOnAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllczpwMj4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDIpDQoNCg0KDQpgYGANCg0KDQoNCiMjTW9kZWwgMS4yOiBtb2RlbCBmb3IgY29zdC1wb2xpY3kgY29tYmluYXRpb24gcD0wLjUNCmBgYHtyfQ0KZml0MiA8LSBicm0oYmYobG9nQzJ+YWdlX2dyb3VwK2VkdWMyK2QxYStoMStzZWxmaGVhbHRoK3Ntb3N0dA0KICAgICAgICAgICAgICAgK2IxOGErYjZhKnAsIHF1YW50aWxlID0gMC41KSwgZGF0YSA9IGRhdGExLCANCiAgICAgICAgICAgIGZhbWlseSA9IGFzeW1fbGFwbGFjZSgpKQ0Kc3VtbWFyeShmaXQyKQ0KbWFyZ2luYWxfZWZmZWN0cyhmaXQyKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQyLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQpoeXBvdGhlc2lzKGZpdDIsInNlbGZoZWFsdGhnb29kPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0Miwic21vc3R0bWVkaXVtPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInNtb3N0dGhlYXZ5PjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjE4YWJhZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllcz4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsInAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInAyPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjZheWVzOnAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllczpwMj4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDIpDQoNCg0KDQpgYGANCg0KDQojI01vZGVsIDEuMjogbW9kZWwgZm9yIGNvc3QtcG9saWN5IGNvbWJpbmF0aW9uIHA9MC43NQ0KYGBge3J9DQpmaXQyIDwtIGJybShiZihsb2dDMn5hZ2VfZ3JvdXArZWR1YzIrZDFhK2gxK3NlbGZoZWFsdGgrc21vc3R0DQogICAgICAgICAgICAgICArYjE4YStiNmEqcCwgcXVhbnRpbGUgPSAwLjc1KSwgZGF0YSA9IGRhdGExLCANCiAgICAgICAgICAgIGZhbWlseSA9IGFzeW1fbGFwbGFjZSgpKQ0Kc3VtbWFyeShmaXQyKQ0KbWFyZ2luYWxfZWZmZWN0cyhmaXQyKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQyLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQpoeXBvdGhlc2lzKGZpdDIsInNlbGZoZWFsdGhnb29kPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0Miwic21vc3R0bWVkaXVtPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInNtb3N0dGhlYXZ5PjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjE4YWJhZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllcz4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsInAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInAyPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjZheWVzOnAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllczpwMj4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDIpDQoNCg0KDQpgYGANCiNNb2RlbCAyOiBtb2RlbCBmb3IgcGVyc2lzdGVuY2UgDQoNCiMjTW9kZWwgMi4xOiAgc2luZ2xlIHBvbGljeQ0KDQpgYGB7cn0NCg0KDQoNCnByaW9yPWdldF9wcmlvcihmb3JtdWxhPWhpZ2hwZXJ+YWdlX2dyb3VwK2VkdWMyK2QxYStoMStzZWxmaGVhbHRoK3Ntb3N0dA0KICAgICAgICAgICAgICAgK2IxOGErYjZhK2xhYmVsMStmcmVlRW4rYW50K2M3YWQsIGZhbWlseT0iYmVybm91bGxpIiwgZGF0YT1kYXRhMSkNCiANCnNldC5zZWVkKDEyMzQpIA0KIA0KZml0Mz1icm0oZm9ybXVsYT1oaWdocGVyfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YStsYWJlbDErZnJlZUVuK2FudCtjN2FkLCBmYW1pbHk9ImJlcm5vdWxsaSIsIGRhdGE9ZGF0YTEsIGNoYWlucz01LCBpdGVyPTIwMDAsIHdhcm11cD0xMDAwLCBwcmlvcj1wcmlvcikNCg0Kc3VtbWFyeShmaXQzKQ0KDQpoeXBvdGhlc2lzKGZpdDMsImFnZV9ncm91cGdyMzAzOT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQzLCJhZ2VfZ3JvdXBncjQwNDkgPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDMsImFnZV9ncm91cGdyNTA1OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MywiYWdlX2dyb3VwNjBwbHVzPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MywiZDFhbWFycmllZD4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQzLCJoMTE+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQzLCJlZHVjMjI+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MywiZWR1YzIzPjAiLGFscGhhPTAuMDUpDQoNCg0KaHlwb3RoZXNpcyhmaXQzLCJzZWxmaGVhbHRoZ29vZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDMsInNtb3N0dG1lZGl1bT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQzLCJzbW9zdHRoZWF2eT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDMsImIxOGFiYWQ+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQzLCJiNmF5ZXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQzLCJsYWJlbDExPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDMsImZyZWVFbjE+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MywiYW50MT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQzLCJjN2FkMT4wIixhbHBoYT0wLjA1KQ0KDQoNCnBsb3QoZml0MykNCg0KYGBgDQoNCg0KIyNNb2RlbCAyLjI6ICBwb2xpY3kgY29tYmluYXRpb246IHBlcnNpc3RlbmNlDQoNCg0KYGBge3J9DQoNCnByaW9yPWdldF9wcmlvcihmb3JtdWxhPWhpZ2hwZXJ+YWdlX2dyb3VwK2VkdWMyK2QxYStoMStzZWxmaGVhbHRoK3Ntb3N0dA0KICAgICAgICAgICAgICAgK2IxOGErYjZhKnAsIGZhbWlseT0iYmVybm91bGxpIiwgZGF0YT1kYXRhMSkNCiANCnNldC5zZWVkKDEyMzQpIA0KIA0KZml0ND1icm0oZm9ybXVsYT1oaWdocGVyfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YSpwLCBmYW1pbHk9ImJlcm5vdWxsaSIsIGRhdGE9ZGF0YTEsIGNoYWlucz01LCBpdGVyPTIwMDAsIHdhcm11cD0xMDAwLCBwcmlvcj1wcmlvcikNCg0Kc3VtbWFyeShmaXQ0KQ0KDQpoeXBvdGhlc2lzKGZpdDQsImFnZV9ncm91cGdyMzAzOT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJhZ2VfZ3JvdXBncjQwNDkgPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDQsImFnZV9ncm91cGdyNTA1OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0NCwiYWdlX2dyb3VwNjBwbHVzPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0NCwiZDFhbWFycmllZD4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJoMTE+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQ0LCJlZHVjMjI+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0NCwiZWR1YzIzPjAiLGFscGhhPTAuMDUpDQoNCg0KaHlwb3RoZXNpcyhmaXQ0LCJzZWxmaGVhbHRoZ29vZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDQsInNtb3N0dG1lZGl1bT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJzbW9zdHRoZWF2eT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDQsImIxOGFiYWQ+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQ0LCJiNmF5ZXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQ0LCJwMT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJwMj4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDQsImI2YXllczpwMT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJiNmF5ZXM6cDI+MCIsYWxwaGE9MC4wNSkNCg0KcGxvdChmaXQ0KQ0KDQpgYGANCg0KDQoNCg0KDQojbW9kZWwgZm9yIGluY29tZT0xDQoNCg0KDQojI01vZGVsIDEuMTogbW9kZWwgZm9yIGNvc3Qtc2luZ2xlIHBvbGljeSANCg0KYGBge3J9DQpkYXRhMj1zdWJzZXQobmV3ZGF0YTIsIGluMDA9PTEpDQogICAgICAgICAgICANCmZpdDEgPC0gYnJtKGJmKGxvZ0MxfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YStsYWJlbDErZnJlZUVuK2FudCtjN2FkLCBxdWFudGlsZSA9IDAuMjUpLCBkYXRhID0gZGF0YTIsIA0KICAgICAgICAgICAgZmFtaWx5ID0gYXN5bV9sYXBsYWNlKCkpDQpzdW1tYXJ5KGZpdDEpDQoNCm1hcmdpbmFsX2VmZmVjdHMoZml0MSkNCg0KI2V2aWRlbmNlIHJhdGlvDQoNCg0KDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyMzAzOT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJhZ2VfZ3JvdXBncjQwNDkgPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyNTA1OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwNjBwbHVzPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MSwiZDFhbWFycmllZD4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJoMTE+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJlZHVjMjI+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiZWR1YzIzPjAiLGFscGhhPTAuMDUpDQoNCg0KaHlwb3RoZXNpcyhmaXQxLCJzZWxmaGVhbHRoZ29vZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsInNtb3N0dG1lZGl1bT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJzbW9zdHRoZWF2eT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImIxOGFiYWQ+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJiNmF5ZXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJsYWJlbDExPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImZyZWVFbjE+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYW50MT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJjN2FkMT4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDEpDQoNCmBgYA0KDQoNCg0KIyNNb2RlbCAxLjE6IG1vZGVsIGZvciBjb3N0LXNpbmdsZSBwb2xpY3kgLTAuNQ0KDQpgYGB7cn0NCmZpdDEgPC0gYnJtKGJmKGxvZ0MxfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YStsYWJlbDErZnJlZUVuK2FudCtjN2FkLCBxdWFudGlsZSA9IDAuNSksIGRhdGEgPSBkYXRhMiwgDQogICAgICAgICAgICBmYW1pbHkgPSBhc3ltX2xhcGxhY2UoKSkNCnN1bW1hcnkoZml0MSkNCg0KbWFyZ2luYWxfZWZmZWN0cyhmaXQxKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQpoeXBvdGhlc2lzKGZpdDEsInNlbGZoZWFsdGhnb29kPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MSwic21vc3R0bWVkaXVtPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsInNtb3N0dGhlYXZ5PjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MSwiYjE4YWJhZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImI2YXllcz4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImxhYmVsMTE+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiZnJlZUVuMT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJhbnQxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImM3YWQxPjAiLGFscGhhPTAuMDUpDQoNCnBsb3QoZml0MSkNCg0KYGBgDQoNCg0KDQojI01vZGVsIDEuMTogbW9kZWwgZm9yIGNvc3Qtc2luZ2xlIHBvbGljeSAtMC43NQ0KDQpgYGB7cn0NCmZpdDEgPC0gYnJtKGJmKGxvZ0MxfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YStsYWJlbDErZnJlZUVuK2FudCtjN2FkLCBxdWFudGlsZSA9IDAuNzUpLCBkYXRhID0gZGF0YTIsIA0KICAgICAgICAgICAgZmFtaWx5ID0gYXN5bV9sYXBsYWNlKCkpDQpzdW1tYXJ5KGZpdDEpDQoNCm1hcmdpbmFsX2VmZmVjdHMoZml0MSkNCg0KI2V2aWRlbmNlIHJhdGlvDQoNCg0KDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyMzAzOT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJhZ2VfZ3JvdXBncjQwNDkgPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImFnZV9ncm91cGdyNTA1OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYWdlX2dyb3VwNjBwbHVzPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MSwiZDFhbWFycmllZD4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJoMTE+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJlZHVjMjI+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiZWR1YzIzPjAiLGFscGhhPTAuMDUpDQoNCg0KaHlwb3RoZXNpcyhmaXQxLCJzZWxmaGVhbHRoZ29vZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsInNtb3N0dG1lZGl1bT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJzbW9zdHRoZWF2eT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDEsImIxOGFiYWQ+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJiNmF5ZXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQxLCJsYWJlbDExPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDEsImZyZWVFbjE+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MSwiYW50MT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQxLCJjN2FkMT4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDEpDQoNCmBgYA0KDQpXQUlDKGZpdCwgZml0MTAsIGZpdDEwMCkNCg0KIyNNb2RlbCAxLjI6IG1vZGVsIGZvciBjb3N0LXBvbGljeSBjb21iaW5hdGlvbg0KYGBge3J9DQpmaXQyIDwtIGJybShiZihsb2dDMX5hZ2VfZ3JvdXArZWR1YzIrZDFhK2gxK3NlbGZoZWFsdGgrc21vc3R0DQogICAgICAgICAgICAgICArYjE4YStiNmEqcCwgcXVhbnRpbGUgPSAwLjI1KSwgZGF0YSA9IGRhdGEyLCANCiAgICAgICAgICAgIGZhbWlseSA9IGFzeW1fbGFwbGFjZSgpKQ0Kc3VtbWFyeShmaXQyKQ0KbWFyZ2luYWxfZWZmZWN0cyhmaXQyKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQyLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQpoeXBvdGhlc2lzKGZpdDIsInNlbGZoZWFsdGhnb29kPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0Miwic21vc3R0bWVkaXVtPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInNtb3N0dGhlYXZ5PjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjE4YWJhZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllcz4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsInAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInAyPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjZheWVzOnAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllczpwMj4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDIpDQoNCg0KDQpgYGANCg0KDQoNCiMjTW9kZWwgMS4yOiBtb2RlbCBmb3IgY29zdC1wb2xpY3kgY29tYmluYXRpb24gcD0wLjUNCmBgYHtyfQ0KZml0MiA8LSBicm0oYmYobG9nQzF+YWdlX2dyb3VwK2VkdWMyK2QxYStoMStzZWxmaGVhbHRoK3Ntb3N0dA0KICAgICAgICAgICAgICAgK2IxOGErYjZhKnAsIHF1YW50aWxlID0gMC41KSwgZGF0YSA9IGRhdGEyLCANCiAgICAgICAgICAgIGZhbWlseSA9IGFzeW1fbGFwbGFjZSgpKQ0Kc3VtbWFyeShmaXQyKQ0KbWFyZ2luYWxfZWZmZWN0cyhmaXQyKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQyLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQpoeXBvdGhlc2lzKGZpdDIsInNlbGZoZWFsdGhnb29kPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0Miwic21vc3R0bWVkaXVtPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInNtb3N0dGhlYXZ5PjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjE4YWJhZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllcz4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsInAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInAyPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjZheWVzOnAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllczpwMj4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDIpDQoNCg0KDQpgYGANCg0KDQojI01vZGVsIDEuMjogbW9kZWwgZm9yIGNvc3QtcG9saWN5IGNvbWJpbmF0aW9uIHA9MC43NQ0KYGBge3J9DQpmaXQyIDwtIGJybShiZihsb2dDMX5hZ2VfZ3JvdXArZWR1YzIrZDFhK2gxK3NlbGZoZWFsdGgrc21vc3R0DQogICAgICAgICAgICAgICArYjE4YStiNmEqcCwgcXVhbnRpbGUgPSAwLjc1KSwgZGF0YSA9IGRhdGEyLCANCiAgICAgICAgICAgIGZhbWlseSA9IGFzeW1fbGFwbGFjZSgpKQ0Kc3VtbWFyeShmaXQyKQ0KbWFyZ2luYWxfZWZmZWN0cyhmaXQyKQ0KDQojZXZpZGVuY2UgcmF0aW8NCg0KDQoNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3IzMDM5PjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImFnZV9ncm91cGdyNDA0OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MiwiYWdlX2dyb3VwZ3I1MDU5ID4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJhZ2VfZ3JvdXA2MHBsdXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQyLCJkMWFtYXJyaWVkPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImgxMT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImVkdWMyMj4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQyLCJlZHVjMjM+MCIsYWxwaGE9MC4wNSkNCg0KDQpoeXBvdGhlc2lzKGZpdDIsInNlbGZoZWFsdGhnb29kPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0Miwic21vc3R0bWVkaXVtPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInNtb3N0dGhlYXZ5PjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjE4YWJhZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllcz4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDIsInAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsInAyPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MiwiYjZheWVzOnAxPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDIsImI2YXllczpwMj4wIixhbHBoYT0wLjA1KQ0KDQpwbG90KGZpdDIpDQoNCg0KDQpgYGANCiNNb2RlbCAyOiBtb2RlbCBmb3IgcGVyc2lzdGVuY2UgDQoNCiMjTW9kZWwgMi4xOiAgc2luZ2xlIHBvbGljeQ0KDQpgYGB7cn0NCg0KDQoNCnByaW9yPWdldF9wcmlvcihmb3JtdWxhPWhpZ2hwZXJ+YWdlX2dyb3VwK2VkdWMyK2QxYStoMStzZWxmaGVhbHRoK3Ntb3N0dA0KICAgICAgICAgICAgICAgK2IxOGErYjZhK2xhYmVsMStmcmVlRW4rYW50K2M3YWQsIGZhbWlseT0iYmVybm91bGxpIiwgZGF0YT1kYXRhMikNCiANCnNldC5zZWVkKDEyMzQpIA0KIA0KZml0Mz1icm0oZm9ybXVsYT1oaWdocGVyfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YStsYWJlbDErZnJlZUVuK2FudCtjN2FkLCBmYW1pbHk9ImJlcm5vdWxsaSIsIGRhdGE9ZGF0YTIsIGNoYWlucz01LCBpdGVyPTIwMDAsIHdhcm11cD0xMDAwLCBwcmlvcj1wcmlvcikNCg0Kc3VtbWFyeShmaXQzKQ0KDQpoeXBvdGhlc2lzKGZpdDMsImFnZV9ncm91cGdyMzAzOT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQzLCJhZ2VfZ3JvdXBncjQwNDkgPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDMsImFnZV9ncm91cGdyNTA1OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MywiYWdlX2dyb3VwNjBwbHVzPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0MywiZDFhbWFycmllZD4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQzLCJoMTE+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQzLCJlZHVjMjI+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MywiZWR1YzIzPjAiLGFscGhhPTAuMDUpDQoNCg0KaHlwb3RoZXNpcyhmaXQzLCJzZWxmaGVhbHRoZ29vZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDMsInNtb3N0dG1lZGl1bT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQzLCJzbW9zdHRoZWF2eT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDMsImIxOGFiYWQ+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQzLCJiNmF5ZXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQzLCJsYWJlbDExPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDMsImZyZWVFbjE+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0MywiYW50MT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQzLCJjN2FkMT4wIixhbHBoYT0wLjA1KQ0KDQoNCnBsb3QoZml0MykNCg0KYGBgDQoNCg0KIyNNb2RlbCAyLjI6ICBwb2xpY3kgY29tYmluYXRpb246IHBlcnNpc3RlbmNlDQoNCg0KYGBge3J9DQoNCnByaW9yPWdldF9wcmlvcihmb3JtdWxhPWhpZ2hwZXJ+YWdlX2dyb3VwK2VkdWMyK2QxYStoMStzZWxmaGVhbHRoK3Ntb3N0dA0KICAgICAgICAgICAgICAgK2IxOGErYjZhKnAsIGZhbWlseT0iYmVybm91bGxpIiwgZGF0YT1kYXRhMikNCiANCnNldC5zZWVkKDEyMzQpIA0KIA0KZml0ND1icm0oZm9ybXVsYT1oaWdocGVyfmFnZV9ncm91cCtlZHVjMitkMWEraDErc2VsZmhlYWx0aCtzbW9zdHQNCiAgICAgICAgICAgICAgICtiMThhK2I2YSpwLCBmYW1pbHk9ImJlcm5vdWxsaSIsIGRhdGE9ZGF0YTIsIGNoYWlucz01LCBpdGVyPTIwMDAsIHdhcm11cD0xMDAwLCBwcmlvcj1wcmlvcikNCg0Kc3VtbWFyeShmaXQ0KQ0KDQpoeXBvdGhlc2lzKGZpdDQsImFnZV9ncm91cGdyMzAzOT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJhZ2VfZ3JvdXBncjQwNDkgPjAiLGFscGhhPTAuMDUpDQpoeXBvdGhlc2lzKGZpdDQsImFnZV9ncm91cGdyNTA1OSA+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0NCwiYWdlX2dyb3VwNjBwbHVzPjAiLGFscGhhPTAuMDUpDQoNCmh5cG90aGVzaXMoZml0NCwiZDFhbWFycmllZD4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJoMTE+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQ0LCJlZHVjMjI+MCIsYWxwaGE9MC4wNSkNCmh5cG90aGVzaXMoZml0NCwiZWR1YzIzPjAiLGFscGhhPTAuMDUpDQoNCg0KaHlwb3RoZXNpcyhmaXQ0LCJzZWxmaGVhbHRoZ29vZD4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDQsInNtb3N0dG1lZGl1bT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJzbW9zdHRoZWF2eT4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDQsImIxOGFiYWQ+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQ0LCJiNmF5ZXM+MCIsYWxwaGE9MC4wNSkNCg0KaHlwb3RoZXNpcyhmaXQ0LCJwMT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJwMj4wIixhbHBoYT0wLjA1KQ0KDQpoeXBvdGhlc2lzKGZpdDQsImI2YXllczpwMT4wIixhbHBoYT0wLjA1KQ0KaHlwb3RoZXNpcyhmaXQ0LCJiNmF5ZXM6cDI+MCIsYWxwaGE9MC4wNSkNCg0KcGxvdChmaXQ0KQ0KDQpgYGANCg0KDQoNCg0KDQo=