tao subdata

library("foreign", lib.loc="/Library/Frameworks/R.framework/Versions/3.4/Resources/library")

data=read.dta("/Users/phuongthao/Desktop/Thao1.dta")

data1=subset(data, select=c("b6new", "honnhan", "nghe", "thunhapcanhan", "hocvan1", "nhomtuoi", "h1new", "h6new", "sh1new", "b2", "b12", "b15new","b18new", "b5new", "q1", "q2","q3","q4"))
data1$honnhan=as.factor(data1$honnhan)
data1$nghe=as.factor(data1$nghe)
data1$thunhapcanhan=as.factor(data1$thunhapcanhan)
data1$hocvan1=as.factor(data1$hocvan1)
data1$nhomtuoi=as.factor(data1$nhomtuoi)
data1$sh1new=as.factor(data1$sh1new)
data1$b2=as.factor(data1$b2)
data1$b12=as.factor(data1$b12)
data1$sh1new=as.factor(data1$sh1new)
data1$b15new=as.factor(data1$b15new)
data1$b18new=as.factor(data1$b18new)
data1$b5new=as.factor(data1$b5new)

library(VIM); 
## Loading required package: colorspace
## Loading required package: grid
## Loading required package: data.table
## VIM is ready to use. 
##  Since version 4.0.0 the GUI is in its own package VIMGUI.
## 
##           Please use the package to use the new (and old) GUI.
## Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
library(mice)

head(data1)
##   b6new honnhan nghe thunhapcanhan hocvan1 nhomtuoi h1new h6new sh1new b2
## 1     0       1    2             3       3        1     1     0      3  2
## 2     0       1    1             3       1        3     1     0      1  1
## 3     0       1    1             3       3        2     1     0      3  1
## 4     0       2    1             3       3        1     1     0      2  2
## 5     0       2    1             2       3        1     0     0      3  3
## 6     0       1    1             2       1        4     0     0      3  3
##   b12 b15new b18new b5new q1 q2 q3 q4
## 1   3      3      1     2  0  0  0  0
## 2   3      3      1     3  0  0  0  1
## 3   2      1      1     2  0  1  0  1
## 4   2      2      1     1  0  0  1  1
## 5   3      3      1     1  0  0  0  0
## 6   2      2      2     2  0  0  0  1

xem xet bo so lieu

md.pattern(data1)
##     h6new h1new sh1new nghe b2 q1 q4 nhomtuoi q2 q3 honnhan thunhapcanhan
## 699     1     1      1    1  1  1  1        1  1  1       1             1
##  27     1     1      1    1  1  1  1        1  1  1       1             1
##   8     1     1      1    1  1  1  1        1  1  1       0             1
##   2     1     1      1    0  1  1  1        1  1  1       1             1
##   9     1     1      1    1  1  1  1        1  1  1       1             0
##   8     1     1      1    1  1  1  1        1  1  1       1             1
##   3     1     1      1    1  1  1  1        0  1  1       1             1
##   1     1     1      1    1  0  1  1        1  1  1       1             1
##   6     1     1      1    1  1  1  1        1  1  1       1             1
##   5     1     1      1    1  1  1  1        1  1  1       1             1
##  15     1     1      1    1  1  1  1        1  1  1       1             1
##   8     1     1      1    1  1  1  1        1  1  1       1             1
##   1     1     1      1    1  1  1  1        1  0  1       1             1
##   7     1     1      1    1  1  1  1        1  1  0       1             1
##   1     1     1      1    1  1  1  1        1  1  1       1             0
##   2     1     1      1    1  1  1  1        1  1  1       1             1
##   4     1     1      1    1  1  1  1        1  1  1       1             1
##   1     1     1      1    1  1  1  1        1  1  1       0             1
##   1     1     1      1    1  1  1  1        1  1  1       1             1
##   2     1     1      1    1  1  1  1        1  1  1       1             1
##   1     1     1      1    1  1  1  1        1  1  1       1             1
##   2     1     1      1    1  1  1  1        1  1  1       1             1
##   1     1     1      1    1  1  1  1        1  1  1       0             1
##   1     1     1      1    1  1  1  1        1  1  1       1             1
##   1     1     1      1    1  1  1  1        1  1  1       1             1
##   1     1     1      1    1  1  1  1        1  1  1       1             1
##   1     1     1      1    1  1  1  1        1  1  1       1             0
##   1     1     1      1    1  1  1  1        1  1  1       0             1
##   1     1     1      1    1  1  1  1        1  1  1       1             0
##   1     1     1      1    1  1  0  0        1  0  0       1             1
##   1     1     1      1    1  0  0  0        1  0  0       1             1
##   1     1     0      0    0  0  0  0        0  0  0       0             0
##         0     1      1    3  3  3  3        4  4 10      12            13
##     b5new hocvan1 b15new b12 b18new b6new    
## 699     1       1      1   1      1     1   0
##  27     1       1      1   1      1     0   1
##   8     1       1      1   1      1     1   1
##   2     1       1      1   1      1     1   1
##   9     1       1      1   1      1     1   1
##   8     1       0      1   1      1     1   1
##   3     1       1      1   1      1     1   1
##   1     1       1      1   1      1     1   1
##   6     1       1      1   0      1     1   1
##   5     1       1      0   1      1     1   1
##  15     1       1      1   1      0     1   1
##   8     0       1      1   1      1     1   1
##   1     1       1      1   1      1     1   1
##   7     1       1      1   1      1     1   1
##   1     1       1      1   1      1     0   2
##   2     1       0      1   1      1     0   2
##   4     1       1      1   0      1     0   2
##   1     1       1      0   1      1     1   2
##   1     1       1      0   0      1     1   2
##   2     1       1      1   1      0     0   2
##   1     1       0      1   1      0     1   2
##   2     1       1      0   1      0     1   2
##   1     0       1      1   1      1     1   2
##   1     0       1      0   1      1     1   2
##   1     1       1      0   0      1     0   3
##   1     1       1      1   0      0     0   3
##   1     1       1      0   1      0     1   3
##   1     0       0      1   1      1     1   3
##   1     0       0      1   1      1     1   3
##   1     1       1      1   1      1     1   4
##   1     1       1      0   0      0     0   9
##   1     0       0      0   0      0     0  17
##        13      14     14  15     24    40 177
aggr(data1, prop=T, mumbers=T)

impute gia tri missing

mdata=mice(data1, seed=12345, printFlag = F)
mdata$imp$b6new
##     1 2 3 4 5
## 42  0 0 0 0 0
## 61  0 1 0 0 0
## 69  0 1 0 0 0
## 81  0 1 0 0 0
## 96  1 0 0 0 0
## 104 0 0 0 0 0
## 109 1 1 0 1 1
## 127 1 0 0 0 0
## 156 1 0 1 0 1
## 169 0 1 0 0 1
## 184 0 0 0 0 0
## 185 0 1 0 0 1
## 245 1 1 1 0 1
## 267 0 1 0 0 1
## 303 1 0 0 0 1
## 317 0 0 0 1 0
## 390 0 0 0 1 0
## 424 0 0 0 1 0
## 436 1 1 0 1 1
## 462 1 1 1 1 1
## 468 1 0 0 0 0
## 510 0 0 0 0 0
## 525 1 0 0 0 1
## 529 0 0 0 1 0
## 553 0 0 0 0 0
## 615 0 0 0 0 0
## 617 1 1 1 0 1
## 684 1 0 1 0 1
## 689 0 0 1 1 1
## 698 0 1 0 0 0
## 717 0 0 1 0 0
## 722 0 0 1 1 0
## 754 0 1 0 0 0
## 755 0 0 0 0 0
## 774 0 1 1 0 0
## 786 0 0 0 1 1
## 803 0 1 0 1 0
## 808 1 0 0 0 1
## 809 0 0 0 0 0
## 812 0 0 0 0 0
mdata$imp$honnhan
##     1 2 3 4 5
## 90  1 1 1 1 1
## 291 1 1 1 1 1
## 324 1 1 1 1 1
## 350 2 1 2 2 2
## 461 1 1 1 1 1
## 590 1 1 1 1 1
## 660 1 1 2 2 2
## 661 1 1 1 1 1
## 758 1 1 1 1 1
## 783 2 2 2 2 2
## 808 1 2 1 2 1
## 820 1 1 2 1 1
mdata$imp$nghe
##     1 2 3 4 5
## 103 1 1 1 1 1
## 792 2 1 1 1 1
## 808 2 2 1 2 2
mdata$imp$thunhapcanhan
##     1 2 3 4 5
## 799 2 1 2 1 2
## 800 2 2 2 2 2
## 802 1 2 2 2 2
## 806 2 2 3 2 2
## 808 2 2 2 1 3
## 811 2 2 2 1 1
## 812 1 1 2 2 2
## 813 2 2 1 2 1
## 814 1 1 1 2 2
## 815 2 2 2 1 2
## 819 2 2 2 1 2
## 821 3 1 3 1 1
## 823 2 1 2 2 2
mdata$imp$hocvan1
##     1 2 3 4 5
## 61  3 3 3 3 2
## 80  2 1 1 1 2
## 224 3 3 3 3 2
## 235 1 3 3 2 1
## 291 2 3 3 2 1
## 296 1 1 1 1 1
## 410 1 1 3 3 1
## 485 1 2 3 3 3
## 525 2 2 1 2 2
## 534 2 3 2 2 1
## 555 3 3 3 3 3
## 678 2 2 3 2 3
## 808 2 3 1 3 3
## 814 3 3 3 2 2
mdata$imp$nhomtuoi
##     1 2 3 4 5
## 266 3 3 3 3 3
## 515 1 1 1 1 1
## 621 3 3 3 3 3
## 808 3 2 3 1 2
mdata$imp$h1new
##     1 2 3 4 5
## 808 0 1 0 1 0
mdata$imp$h6new
## NULL
mdata$imp$sh1new
##     1 2 3 4 5
## 808 2 2 3 2 2
mdata$imp$b2
##     1 2 3 4 5
## 88  1 1 1 1 2
## 755 1 2 1 2 1
## 808 1 2 2 1 2
mdata$imp$b12
##     1 2 3 4 5
## 96  2 2 3 3 2
## 104 1 2 2 2 2
## 128 3 3 3 2 3
## 170 2 1 2 3 2
## 207 3 3 3 3 2
## 303 3 2 3 3 3
## 341 3 2 3 2 2
## 504 2 2 1 3 2
## 553 1 1 3 2 2
## 606 3 3 3 3 3
## 689 2 2 2 2 2
## 698 2 2 2 2 2
## 755 3 2 2 2 3
## 795 2 2 2 3 3
## 808 1 3 3 3 3
mdata$imp$b15new
##     1 2 3 4 5
## 155 1 1 1 1 1
## 205 2 3 2 1 3
## 210 3 3 2 3 3
## 269 3 3 3 1 3
## 369 1 1 2 1 1
## 377 2 3 3 3 3
## 553 1 1 1 1 2
## 590 1 1 2 1 1
## 709 2 3 3 2 3
## 728 2 1 2 3 2
## 755 3 1 3 3 3
## 795 2 2 2 3 2
## 802 3 3 2 3 3
## 808 1 2 2 3 2
mdata$imp$b18new
##     1 2 3 4 5
## 86  1 1 2 2 2
## 108 1 2 2 2 2
## 127 2 1 2 2 2
## 146 2 1 1 1 2
## 174 1 2 1 1 1
## 211 1 1 1 1 1
## 257 1 1 1 1 1
## 289 1 1 1 1 1
## 303 1 1 1 1 1
## 377 1 1 1 1 1
## 406 2 2 2 2 1
## 501 1 1 1 1 1
## 534 1 1 1 1 1
## 544 1 2 2 1 1
## 569 2 1 2 2 2
## 681 1 1 1 1 1
## 684 1 1 1 1 1
## 728 2 2 1 1 2
## 737 1 2 2 1 1
## 755 1 1 1 1 1
## 764 1 2 2 1 1
## 802 1 2 2 1 1
## 808 2 1 1 1 1
## 817 2 1 1 2 1
mdata$imp$b5new
##     1 2 3 4 5
## 51  2 2 1 2 2
## 72  3 2 2 2 2
## 145 3 3 3 3 3
## 197 1 1 2 2 1
## 250 2 3 1 3 2
## 291 2 1 3 2 2
## 350 1 1 1 1 1
## 369 3 2 2 2 2
## 526 3 3 3 3 3
## 535 2 2 2 3 2
## 566 1 1 1 1 1
## 808 3 2 3 1 2
## 814 1 1 1 1 1
mdata$imp$q1
##     1 2 3 4 5
## 20  0 0 1 0 1
## 755 0 0 0 0 0
## 808 1 0 0 0 0
mdata$imp$q2
##     1 2 3 4 5
## 20  0 0 0 0 0
## 150 0 0 0 0 0
## 755 0 0 0 0 0
## 808 1 0 0 0 0
mdata$imp$q3
##     1 2 3 4 5
## 17  0 1 0 0 0
## 20  0 0 1 1 1
## 33  0 0 1 0 0
## 142 1 0 0 0 0
## 209 1 1 1 0 1
## 270 1 1 1 1 0
## 331 1 0 1 0 1
## 707 0 0 0 0 1
## 755 0 0 0 0 0
## 808 0 1 1 1 1
mdata$imp$q4
##     1 2 3 4 5
## 20  0 1 1 0 0
## 755 0 0 1 1 1
## 808 0 0 0 0 0

tao dataset moi

newdata=complete(mdata, action=5)
head(newdata)
##   b6new honnhan nghe thunhapcanhan hocvan1 nhomtuoi h1new h6new sh1new b2
## 1     0       1    2             3       3        1     1     0      3  2
## 2     0       1    1             3       1        3     1     0      1  1
## 3     0       1    1             3       3        2     1     0      3  1
## 4     0       2    1             3       3        1     1     0      2  2
## 5     0       2    1             2       3        1     0     0      3  3
## 6     0       1    1             2       1        4     0     0      3  3
##   b12 b15new b18new b5new q1 q2 q3 q4
## 1   3      3      1     2  0  0  0  0
## 2   3      3      1     3  0  0  0  1
## 3   2      1      1     2  0  1  0  1
## 4   2      2      1     1  0  0  1  1
## 5   3      3      1     1  0  0  0  0
## 6   2      2      2     2  0  0  0  1
aggr(newdata, prop=T, mumbers=T)

chay logistic

yvar = newdata[,1]
xvars = newdata[,-1]
library(BMA)
## Loading required package: survival
## Loading required package: leaps
## Loading required package: robustbase
## 
## Attaching package: 'robustbase'
## The following object is masked from 'package:survival':
## 
##     heart
## Loading required package: inline
## Loading required package: rrcov
## Scalable Robust Estimators with High Breakdown Point (version 1.4-3)
bma.search=bic.glm(xvars, yvar, strict = T,OR=20, glm.family = "binomial")
bma.search
## 
## Call:
## bic.glm.data.frame(x = xvars, y = yvar, glm.family = "binomial",     strict = T, OR = 20)
## 
## 
##  Posterior probabilities(%): 
##       honnhan          nghe thunhapcanhan       hocvan1      nhomtuoi 
##           0.0           0.0           0.0           0.0           0.0 
##         h1new         h6new        sh1new            b2           b12 
##         100.0          91.0           0.0         100.0          77.8 
##        b15new        b18new         b5new            q1            q2 
##          22.2           0.0         100.0           0.0          54.8 
##            q3            q4 
##           0.0           0.0 
## 
##  Coefficient posterior expected values: 
##    (Intercept)        honnhan.           nghe.  thunhapcanhan.  
##       -2.15180         0.00000         0.00000         0.00000  
## thunhapcanhan.        hocvan1.        hocvan1.       nhomtuoi.  
##        0.00000         0.00000         0.00000         0.00000  
##      nhomtuoi.       nhomtuoi.           h1new           h6new  
##        0.00000         0.00000         0.83924         0.62911  
##        sh1new.         sh1new.             b2.             b2.  
##        0.00000         0.00000         1.23115         1.17462  
##            b2.             b2.            b12.            b12.  
##        1.97023         0.76201        -0.20209         0.48483  
##        b15new.         b15new.         b18new.          b5new.  
##       -0.01166         0.16935         0.00000        -0.54657  
##         b5new.              q1              q2              q3  
##       -1.08202         0.00000         0.45248         0.00000  
##             q4  
##        0.00000
summary(bma.search)
## 
## Call:
## bic.glm.data.frame(x = xvars, y = yvar, glm.family = "binomial",     strict = T, OR = 20)
## 
## 
##   6  models were selected
##  Best  5  models (cumulative posterior probability =  0.9659 ): 
## 
##                    p!=0    EV       SD      model 1     model 2   
## Intercept          100    -2.15180  0.3711  -2.222e+00  -2.016e+00
## honnhan.x            0.0                                          
##          .2                0.00000  0.0000       .           .    
## nghe.x               0.0                                          
##       .2                   0.00000  0.0000       .           .    
## thunhapcanhan.x      0.0                                          
##                .2          0.00000  0.0000       .           .    
##                .3          0.00000  0.0000       .           .    
## hocvan1.x            0.0                                          
##          .2                0.00000  0.0000       .           .    
##          .3                0.00000  0.0000       .           .    
## nhomtuoi.x           0.0                                          
##           .2               0.00000  0.0000       .           .    
##           .3               0.00000  0.0000       .           .    
##           .4               0.00000  0.0000       .           .    
## h1new.x            100.0   0.83924  0.2123   8.137e-01   8.247e-01
## h6new.x             91.0   0.62911  0.2868   7.141e-01   6.875e-01
## sh1new.x             0.0                                          
##         .2                 0.00000  0.0000       .           .    
##         .3                 0.00000  0.0000       .           .    
## b2.x               100.0                                          
##     .2                     1.23115  0.2067   1.238e+00   1.236e+00
##     .3                     1.17462  0.2853   1.165e+00   1.160e+00
##     .4                     1.97023  0.2966   1.940e+00   2.018e+00
##     .5                     0.76201  0.5663   7.851e-01   8.459e-01
## b12.x               77.8                                          
##      .2                   -0.20209  0.3260  -1.830e-01  -3.477e-01
##      .3                    0.48483  0.3905   7.013e-01   5.376e-01
## b15new.x            22.2                                          
##         .2                -0.01166  0.1333       .           .    
##         .3                 0.16935  0.3419       .           .    
## b18new.x             0.0                                          
##         .2                 0.00000  0.0000       .           .    
## b5new.x            100.0                                          
##        .2                 -0.54657  0.2051  -5.662e-01  -5.713e-01
##        .3                 -1.08202  0.2243  -1.112e+00  -1.078e+00
## q1.x                 0.0   0.00000  0.0000       .           .    
## q2.x                54.8   0.45248  0.4685   8.059e-01       .    
## q3.x                 0.0   0.00000  0.0000       .           .    
## q4.x                 0.0   0.00000  0.0000       .           .    
##                                                                   
## nVar                                           6           5      
## BIC                                         -4.623e+03  -4.622e+03
## post prob                                    0.385       0.337    
##                    model 3     model 4     model 5   
## Intercept          -2.301e+00  -2.116e+00  -2.064e+00
## honnhan.x                                            
##          .2             .           .           .    
## nghe.x                                               
##       .2                .           .           .    
## thunhapcanhan.x                                      
##                .2       .           .           .    
##                .3       .           .           .    
## hocvan1.x                                            
##          .2             .           .           .    
##          .3             .           .           .    
## nhomtuoi.x                                           
##           .2            .           .           .    
##           .3            .           .           .    
##           .4            .           .           .    
## h1new.x             8.166e-01   8.251e-01   1.051e+00
## h6new.x             6.583e-01   6.393e-01       .    
## sh1new.x                                             
##         .2              .           .           .    
##         .3              .           .           .    
## b2.x                                                 
##     .2              1.220e+00   1.215e+00   1.216e+00
##     .3              1.211e+00   1.191e+00   1.189e+00
##     .4              1.921e+00   2.007e+00   2.003e+00
##     .5              5.741e-01   6.444e-01   7.991e-01
## b12.x                                                
##      .2                 .           .      -2.582e-01
##      .3                 .           .       5.998e-01
## b15new.x                                             
##         .2         -2.941e-02  -1.640e-01       .    
##         .3          7.922e-01   6.421e-01       .    
## b18new.x                                             
##         .2              .           .           .    
## b5new.x                                              
##        .2          -4.589e-01  -4.651e-01  -5.915e-01
##        .3          -1.047e+00  -1.005e+00  -1.081e+00
## q1.x                    .           .           .    
## q2.x                8.764e-01       .           .    
## q3.x                    .           .           .    
## q4.x                    .           .           .    
##                                                      
## nVar                  6           5           4      
## BIC                -4.620e+03  -4.619e+03  -4.619e+03
## post prob           0.129       0.059       0.056
imageplot.bma(bma.search)

#model1
log1<- glm(b6new ~ h1new +h6new+ b2+ b12+ b5new + q2 ,family=binomial(logit),data=newdata)
library ("epiDisplay")
## Loading required package: MASS
## Loading required package: nnet
## 
## Attaching package: 'epiDisplay'
## The following objects are masked from 'package:mice':
## 
##     cc, cci
logistic.display(log1)
## 
## Logistic regression predicting b6new 
##  
##                crude OR(95%CI)   adj. OR(95%CI)    P(Wald's test)
## h1new: 1 vs 0  3.46 (2.46,4.88)  2.26 (1.51,3.36)  < 0.001       
##                                                                  
## h6new: 1 vs 0  2.94 (2.05,4.2)   2.04 (1.33,3.13)  0.001         
##                                                                  
## b2: ref.=1                                                       
##    2           3.82 (2.63,5.57)  3.45 (2.3,5.18)   < 0.001       
##    3           3.94 (2.36,6.59)  3.2 (1.83,5.6)    < 0.001       
##    4           8.2 (4.81,13.97)  6.96 (3.9,12.42)  < 0.001       
##    5           1.64 (0.58,4.63)  2.19 (0.73,6.57)  0.161         
##                                                                  
## b12: ref.=1                                                      
##    2           1.2 (0.68,2.11)   0.83 (0.42,1.64)  0.596         
##    3           2.76 (1.61,4.73)  2.02 (1.06,3.83)  0.032         
##                                                                  
## b5new: ref.=1                                                    
##    2           0.58 (0.41,0.83)  0.57 (0.38,0.84)  0.005         
##    3           0.35 (0.24,0.51)  0.33 (0.21,0.51)  < 0.001       
##                                                                  
## q2: 1 vs 0     1.91 (1.17,3.11)  2.24 (1.24,4.06)  0.008         
##                                                                  
##                P(LR-test)
## h1new: 1 vs 0  < 0.001   
##                          
## h6new: 1 vs 0  < 0.001   
##                          
## b2: ref.=1     < 0.001   
##    2                     
##    3                     
##    4                     
##    5                     
##                          
## b12: ref.=1    < 0.001   
##    2                     
##    3                     
##                          
## b5new: ref.=1  < 0.001   
##    2                     
##    3                     
##                          
## q2: 1 vs 0     0.008     
##                          
## Log-likelihood = -410.7994
## No. of observations = 823
## AIC value = 845.5987
#model2
log2<- glm(b6new ~ h1new +h6new+ b2+ b12+b5new ,family=binomial(logit),data=newdata)
library("epiDisplay")
logistic.display(log2)
## 
## Logistic regression predicting b6new 
##  
##                crude OR(95%CI)   adj. OR(95%CI)     P(Wald's test)
## h1new: 1 vs 0  3.46 (2.46,4.88)  2.28 (1.53,3.4)    < 0.001       
##                                                                   
## h6new: 1 vs 0  2.94 (2.05,4.2)   1.99 (1.3,3.03)    0.001         
##                                                                   
## b2: ref.=1                                                        
##    2           3.82 (2.63,5.57)  3.44 (2.3,5.16)    < 0.001       
##    3           3.94 (2.36,6.59)  3.19 (1.83,5.55)   < 0.001       
##    4           8.2 (4.81,13.97)  7.52 (4.24,13.34)  < 0.001       
##    5           1.64 (0.58,4.63)  2.33 (0.79,6.9)    0.127         
##                                                                   
## b12: ref.=1                                                       
##    2           1.2 (0.68,2.11)   0.71 (0.37,1.36)   0.298         
##    3           2.76 (1.61,4.73)  1.71 (0.92,3.18)   0.089         
##                                                                   
## b5new: ref.=1                                                     
##    2           0.58 (0.41,0.83)  0.56 (0.38,0.84)   0.004         
##    3           0.35 (0.24,0.51)  0.34 (0.22,0.53)   < 0.001       
##                                                                   
##                P(LR-test)
## h1new: 1 vs 0  < 0.001   
##                          
## h6new: 1 vs 0  0.001     
##                          
## b2: ref.=1     < 0.001   
##    2                     
##    3                     
##    4                     
##    5                     
##                          
## b12: ref.=1    < 0.001   
##    2                     
##    3                     
##                          
## b5new: ref.=1  < 0.001   
##    2                     
##    3                     
##                          
## Log-likelihood = -414.2893
## No. of observations = 823
## AIC value = 850.5786