library(foreign)
## Warning: package 'foreign' was built under R version 3.2.5
r=read.dta("C:/Users/BINH THANG/Dropbox/Korea/STudy/Thesis/data management/DataR/dataR5.dta")

r1 <- subset(r )

attach(r1)

r1$logC1=log10(r1$cost_inc)

r1$highper[cost_inc<=62000] <- 0
r1$highper[cost_inc>62000] <- 1


r1$b16a[b16a == 5] <- 0


r1$freeEn[c9==1] <- 1
r1$freeEn[c9>1] <- 0




r1$h1[h1== 1] <- 1
r1$h1[h1== 2] <- 0


r1$c7ad[c7== 2] <- 0
r1$c7ad[c7== 1] <- 1
r1$c7ad[is.na(r1$c7)] <- 0


r1$ant[c5==1& c5==2 & c5==7 & c5==8 & c5==9] <- 0
r1$ant[c5==3|c5==4|c5==5] <- 1
r1$ant[is.na(r1$c5)] <- 0


r1$p1=r1$label1+r1$freeEn+r1$ant+r1$c7ad

r1$p[r1$p1==0] <- 0
r1$p[r1$p1==1] <- 1
r1$p[r1$p1>=2] <- 2

r1$wtp[cost_inc >=1] <- 0
r1$wtp[is.na(r1$wtp)] <- 1






newdata2=r1

attach(newdata2 )
## The following objects are masked from r1:
## 
##     a, a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a,
##     b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123, b6a,
##     b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9,
##     br, branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4,
##     c5, c6, c6a111, c7, c8, c9, clog, clog1, COST, cost_inc,
##     cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3, d3a, d4,
##     d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1, educ2, f1,
##     ghi1, ghi2, ghiro2, giadinhkoUH, group_age, group_age1, h1,
##     h10a, h10a1, h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4,
##     h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log,
##     h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000, ict1a, ict2a,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label_1, label1, label1a,
##     logb7, logC, logitCost, moneyspent, msdt, n01, n02, n03, n05,
##     n06, n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13,
##     n14, n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39,
##     n3posterb, n4, n40, n41, n42, n43, n44, n45, n46, n47, n48,
##     n49, n5, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59, n6,
##     n60, n61, n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a,
##     n66, n66a, n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8,
##     n88, n89, n8nha, n9, n97, n98, n99, n9khach, noE, noEnvi2,
##     occup1, poli4, poli4a, policy, policy_a, policyeffect,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     taxIn, ter_fa1, ter_in, tertile_fa, tertile_indi, test,
##     unitsdiffi1, var242, w1, w2, w3, w4

define varibles

newdata2$age_group=as.factor(newdata2$age_group)
newdata2$educ2=as.factor(newdata2$educ2)

newdata2$h1=as.factor(newdata2$h1)

newdata2$d1a=as.factor(newdata2$d1a)


newdata2$selfhealth=as.factor(newdata2$selfhealth)

newdata2$b18a=as.factor(newdata2$b18a)

newdata2$b16a=as.factor(newdata2$b16a)

newdata2$b6a=as.factor(newdata2$b6a)

newdata2$smostt=as.factor(newdata2$smostt)

newdata2$ter_in=as.factor(newdata2$ter_in)

newdata2$group_age1=as.factor(newdata2$group_age1)

newdata2$label1=as.factor(newdata2$label1)
newdata2$freeEn=as.factor(newdata2$freeEn)
newdata2$c7ad=as.factor(newdata2$c7ad)
newdata2$ant=as.factor(newdata2$ant)

newdata2$p=as.factor(newdata2$p)


newdata2$in00[newdata2$ter_in==1] <- 1
newdata2$in00[newdata2$ter_in==2 | ter_in==3] <- 0

newdata2$in00=as.factor(newdata2$in00)

attach(newdata2)
## The following objects are masked from newdata2 (pos = 3):
## 
##     a, a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123,
##     b6a, b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8,
##     b9, br, branch, branch1, branch2, branch3, c1, c2, c23a, c3,
##     c4, c5, c6, c6a111, c7, c7ad, c8, c9, clog, clog1, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, freeEn, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     highper, ict1a, ict2a, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label_1, label1, label1a, logb7, logC, logC1, logitCost,
##     moneyspent, msdt, n01, n02, n03, n05, n06, n07, n08, n1, n10,
##     n100, n101, n102, n103, n11, n12, n13, n14, n15, n16, n1b, n2,
##     n3, n35, n36, n37, n38, n39, n3posterb, n4, n40, n41, n42,
##     n43, n44, n45, n46, n47, n48, n49, n5, n50, n51, n52, n53,
##     n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a, n62, n62a,
##     n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67, n67a, n68,
##     n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98,
##     n99, n9khach, noE, noEnvi2, occup1, p, p1, poli4, poli4a,
##     policy, policy_a, policyeffect, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, taxIn, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4, wtp
## The following objects are masked from r1:
## 
##     a, a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a,
##     b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123, b6a,
##     b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9,
##     br, branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4,
##     c5, c6, c6a111, c7, c8, c9, clog, clog1, COST, cost_inc,
##     cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3, d3a, d4,
##     d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1, educ2, f1,
##     ghi1, ghi2, ghiro2, giadinhkoUH, group_age, group_age1, h1,
##     h10a, h10a1, h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4,
##     h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log,
##     h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000, ict1a, ict2a,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label_1, label1, label1a,
##     logb7, logC, logitCost, moneyspent, msdt, n01, n02, n03, n05,
##     n06, n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13,
##     n14, n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39,
##     n3posterb, n4, n40, n41, n42, n43, n44, n45, n46, n47, n48,
##     n49, n5, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59, n6,
##     n60, n61, n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a,
##     n66, n66a, n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8,
##     n88, n89, n8nha, n9, n97, n98, n99, n9khach, noE, noEnvi2,
##     occup1, poli4, poli4a, policy, policy_a, policyeffect,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     taxIn, ter_fa1, ter_in, tertile_fa, tertile_indi, test,
##     unitsdiffi1, var242, w1, w2, w3, w4
mydata=newdata2
library(quantreg)
## Warning: package 'quantreg' was built under R version 3.2.5
## Loading required package: SparseM
## Warning: package 'SparseM' was built under R version 3.2.5
## 
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
## 
##     backsolve
# OLS regression
olsreg <- lm(logC1~age_group+educ2+selfhealth+smostt
               +b6a+label1+freeEn+ant+c7ad)
summary(olsreg)
## 
## Call:
## lm(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.58597 -0.14941 -0.02762  0.15352  0.83642 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.750190   0.044780 106.078   <2e-16 ***
## age_groupgr3039  0.041115   0.034263   1.200   0.2308    
## age_groupgr4049 -0.035890   0.033814  -1.061   0.2891    
## age_groupgr5059 -0.024212   0.038185  -0.634   0.5264    
## age_group60plus -0.017801   0.053678  -0.332   0.7403    
## educ22           0.014834   0.032073   0.462   0.6440    
## educ23           0.097123   0.039283   2.472   0.0138 *  
## selfhealthgood   0.051691   0.024217   2.134   0.0334 *  
## smosttmedium     0.009067   0.030829   0.294   0.7688    
## smosttheavy      0.062158   0.032810   1.894   0.0588 .  
## b6ayes           0.047223   0.032351   1.460   0.1451    
## label11         -0.045376   0.033578  -1.351   0.1773    
## freeEn1         -0.055279   0.027909  -1.981   0.0483 *  
## ant1             0.019953   0.024810   0.804   0.4217    
## c7ad1            0.008815   0.025045   0.352   0.7250    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2434 on 429 degrees of freedom
##   (379 observations deleted due to missingness)
## Multiple R-squared:  0.07387,    Adjusted R-squared:  0.04365 
## F-statistic: 2.444 on 14 and 429 DF,  p-value: 0.00254
# Quantile regression
quantreg25 <- rq(logC1~age_group+educ2+selfhealth+smostt
               +b6a+label1+freeEn+ant+c7ad, data=mydata, tau=0.25)
summary(quantreg25)
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = 0.25, data = mydata)
## 
## tau: [1] 0.25
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.54111      4.46221  4.64306
## age_groupgr3039  0.02797     -0.03756  0.08699
## age_groupgr4049 -0.00872     -0.04341  0.04580
## age_groupgr5059 -0.06894     -0.13996  0.06175
## age_group60plus  0.03386     -0.11555  0.08795
## educ22           0.04444     -0.03729  0.09083
## educ23           0.13698      0.05965  0.18640
## selfhealthgood   0.07858      0.03582  0.12927
## smosttmedium     0.05802     -0.00478  0.11153
## smosttheavy      0.03381     -0.04271  0.09230
## b6ayes           0.03729     -0.03184  0.10838
## label11         -0.06727     -0.12296 -0.01920
## freeEn1         -0.10229     -0.13542 -0.04101
## ant1             0.05114      0.01089  0.10197
## c7ad1            0.01165     -0.04995  0.03956
quantreg50 <- rq(logC1~age_group+educ2+selfhealth+smostt
               +b6a+label1+freeEn+ant+c7ad, data=mydata, tau=0.5)
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
summary(quantreg50)
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = 0.5, data = mydata)
## 
## tau: [1] 0.5
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.69412      4.62913  4.76234
## age_groupgr3039  0.07017     -0.00762  0.11965
## age_groupgr4049 -0.02611     -0.08464  0.02735
## age_groupgr5059 -0.01223     -0.10514  0.06287
## age_group60plus -0.00361     -0.09816  0.07310
## educ22           0.01193     -0.04384  0.05624
## educ23           0.10597      0.02678  0.18937
## selfhealthgood   0.07110      0.02635  0.11524
## smosttmedium     0.03412     -0.01380  0.09696
## smosttheavy      0.08018      0.02539  0.11943
## b6ayes           0.07304     -0.00478  0.12704
## label11         -0.07665     -0.12112  0.01765
## freeEn1         -0.09498     -0.14810 -0.01532
## ant1             0.02996     -0.02534  0.07243
## c7ad1           -0.02312     -0.06710  0.05301
quantreg75 <- rq(logC1~age_group+educ2+selfhealth+smostt
               +b6a+label1+freeEn+ant+c7ad, data=mydata, tau=0.75)
summary(quantreg75)
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = 0.75, data = mydata)
## 
## tau: [1] 0.75
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.92917      4.78560  5.03721
## age_groupgr3039 -0.02281     -0.12216  0.04341
## age_groupgr4049 -0.12399     -0.18326 -0.01014
## age_groupgr5059 -0.05394     -0.14683  0.04638
## age_group60plus -0.02148     -0.14957  0.10207
## educ22           0.01410     -0.08124  0.12073
## educ23           0.07281     -0.01582  0.17435
## selfhealthgood   0.07720     -0.00562  0.12324
## smosttmedium    -0.02142     -0.12731  0.07491
## smosttheavy      0.07281      0.00062  0.19915
## b6ayes           0.03675     -0.02471  0.11453
## label11         -0.00871     -0.09766  0.05914
## freeEn1          0.00698     -0.06362  0.09088
## ant1             0.00891     -0.05427  0.06194
## c7ad1            0.01052     -0.04921  0.09845
# Simultaneous quantile regression
quantreg2575 <- rq(logC1~age_group+educ2+selfhealth+smostt
               +b6a+label1+freeEn+ant+c7ad, data=mydata, tau=c(0.25, 0.5, 0.75))
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
summary(quantreg2575)
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = c(0.25, 0.5, 0.75), 
##     data = mydata)
## 
## tau: [1] 0.25
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.54111      4.46221  4.64306
## age_groupgr3039  0.02797     -0.03756  0.08699
## age_groupgr4049 -0.00872     -0.04341  0.04580
## age_groupgr5059 -0.06894     -0.13996  0.06175
## age_group60plus  0.03386     -0.11555  0.08795
## educ22           0.04444     -0.03729  0.09083
## educ23           0.13698      0.05965  0.18640
## selfhealthgood   0.07858      0.03582  0.12927
## smosttmedium     0.05802     -0.00478  0.11153
## smosttheavy      0.03381     -0.04271  0.09230
## b6ayes           0.03729     -0.03184  0.10838
## label11         -0.06727     -0.12296 -0.01920
## freeEn1         -0.10229     -0.13542 -0.04101
## ant1             0.05114      0.01089  0.10197
## c7ad1            0.01165     -0.04995  0.03956
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = c(0.25, 0.5, 0.75), 
##     data = mydata)
## 
## tau: [1] 0.5
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.69412      4.62913  4.76234
## age_groupgr3039  0.07017     -0.00762  0.11965
## age_groupgr4049 -0.02611     -0.08464  0.02735
## age_groupgr5059 -0.01223     -0.10514  0.06287
## age_group60plus -0.00361     -0.09816  0.07310
## educ22           0.01193     -0.04384  0.05624
## educ23           0.10597      0.02678  0.18937
## selfhealthgood   0.07110      0.02635  0.11524
## smosttmedium     0.03412     -0.01380  0.09696
## smosttheavy      0.08018      0.02539  0.11943
## b6ayes           0.07304     -0.00478  0.12704
## label11         -0.07665     -0.12112  0.01765
## freeEn1         -0.09498     -0.14810 -0.01532
## ant1             0.02996     -0.02534  0.07243
## c7ad1           -0.02312     -0.06710  0.05301
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = c(0.25, 0.5, 0.75), 
##     data = mydata)
## 
## tau: [1] 0.75
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.92917      4.78560  5.03721
## age_groupgr3039 -0.02281     -0.12216  0.04341
## age_groupgr4049 -0.12399     -0.18326 -0.01014
## age_groupgr5059 -0.05394     -0.14683  0.04638
## age_group60plus -0.02148     -0.14957  0.10207
## educ22           0.01410     -0.08124  0.12073
## educ23           0.07281     -0.01582  0.17435
## selfhealthgood   0.07720     -0.00562  0.12324
## smosttmedium    -0.02142     -0.12731  0.07491
## smosttheavy      0.07281      0.00062  0.19915
## b6ayes           0.03675     -0.02471  0.11453
## label11         -0.00871     -0.09766  0.05914
## freeEn1          0.00698     -0.06362  0.09088
## ant1             0.00891     -0.05427  0.06194
## c7ad1            0.01052     -0.04921  0.09845
# ANOVA test for coefficient differences
anova(quantreg25, quantreg50, quantreg75)
## Warning in summary.rq(x, se = se, covariance = TRUE): 1 non-positive fis
## Quantile Regression Analysis of Deviance Table
## 
## Model: logC1 ~ age_group + educ2 + selfhealth + smostt + b6a + label1 + freeEn + ant + c7ad
## Joint Test of Equality of Slopes: tau in {  0.25 0.5 0.75  }
## 
##   Df Resid Df F value  Pr(>F)  
## 1 28     1304  1.7252 0.01098 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Plotting data
quantreg.all <- rq(logC1~age_group+educ2+selfhealth+smostt
               +b6a+label1+freeEn+ant+c7ad, tau = seq(0.05, 0.95, by = 0.05), data=mydata)
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
summary(quantreg.all)
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique

## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be
## nonunique
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.05
## 
## Coefficients:
##                 coefficients   lower bd       upper bd      
## (Intercept)       4.362190e+00   4.179280e+00   4.505370e+00
## age_groupgr3039  -3.176000e-02  -1.370500e-01   9.552000e-02
## age_groupgr4049  -2.383000e-02  -1.501800e-01   1.020400e-01
## age_groupgr5059  -4.585000e-02  -1.913500e-01   1.869000e-02
## age_group60plus   6.140000e-03 -1.797693e+308   1.449200e-01
## educ22            8.266000e-02  -3.270000e-03   1.472200e-01
## educ23            1.285500e-01  -5.324000e-02   2.519800e-01
## selfhealthgood    5.610000e-02  -3.934000e-02   1.390000e-01
## smosttmedium      3.407000e-02  -5.822000e-02   2.009700e-01
## smosttheavy       2.173000e-02  -5.596000e-02   9.502000e-02
## b6ayes           -1.331000e-02  -2.489400e-01   7.276000e-02
## label11           4.753000e-02  -8.289000e-02   8.809000e-02
## freeEn1          -1.048500e-01  -2.427400e-01  -2.168000e-02
## ant1             -2.770000e-03  -6.002000e-02   7.743000e-02
## c7ad1             4.231000e-02  -2.713000e-02   1.597200e-01
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.1
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.40284      4.27843  4.50078
## age_groupgr3039  0.05229     -0.07672  0.11307
## age_groupgr4049  0.02927     -0.08061  0.10081
## age_groupgr5059 -0.06038     -0.14656 -0.01703
## age_group60plus  0.00657     -0.27256  0.09151
## educ22           0.05158     -0.00828  0.15138
## educ23           0.16536      0.04357  0.26260
## selfhealthgood   0.06038      0.00543  0.12584
## smosttmedium     0.06499     -0.01506  0.15403
## smosttheavy      0.01812     -0.07130  0.11687
## b6ayes          -0.00461     -0.10681  0.11975
## label11         -0.00952     -0.09242  0.03793
## freeEn1         -0.05301     -0.14817 -0.02339
## ant1             0.05759     -0.01168  0.11159
## c7ad1            0.01207     -0.03861  0.08679
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.15
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.44716      4.37282  4.53055
## age_groupgr3039  0.05224     -0.04511  0.09742
## age_groupgr4049  0.03509     -0.07487  0.08760
## age_groupgr5059 -0.08573     -0.14346 -0.02412
## age_group60plus  0.02125     -0.07258  0.09064
## educ22           0.05310      0.00255  0.11280
## educ23           0.15381      0.07549  0.21307
## selfhealthgood   0.07762      0.02593  0.12644
## smosttmedium     0.05224      0.00061  0.11822
## smosttheavy      0.00872     -0.05172  0.10260
## b6ayes           0.04076     -0.05238  0.11818
## label11         -0.04048     -0.09142 -0.00667
## freeEn1         -0.08174     -0.12933 -0.04038
## ant1             0.05799      0.02700  0.09904
## c7ad1            0.01945     -0.04614  0.06581
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.2
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.47840      4.44346  4.58408
## age_groupgr3039  0.03549     -0.03266  0.10698
## age_groupgr4049  0.01642     -0.03261  0.05849
## age_groupgr5059 -0.06569     -0.14418  0.00410
## age_group60plus -0.00331     -0.07310  0.11698
## educ22           0.05029     -0.01537  0.10982
## educ23           0.14540      0.08185  0.18804
## selfhealthgood   0.08817      0.03950  0.13196
## smosttmedium     0.05846      0.00625  0.11817
## smosttheavy      0.04102     -0.01823  0.08252
## b6ayes           0.04887     -0.04529  0.09785
## label11         -0.05256     -0.10846 -0.00978
## freeEn1         -0.07869     -0.11983 -0.05141
## ant1             0.05810      0.00772  0.08163
## c7ad1            0.00808     -0.03928  0.05121
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.25
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.54111      4.46221  4.64306
## age_groupgr3039  0.02797     -0.03756  0.08699
## age_groupgr4049 -0.00872     -0.04341  0.04580
## age_groupgr5059 -0.06894     -0.13996  0.06175
## age_group60plus  0.03386     -0.11555  0.08795
## educ22           0.04444     -0.03729  0.09083
## educ23           0.13698      0.05965  0.18640
## selfhealthgood   0.07858      0.03582  0.12927
## smosttmedium     0.05802     -0.00478  0.11153
## smosttheavy      0.03381     -0.04271  0.09230
## b6ayes           0.03729     -0.03184  0.10838
## label11         -0.06727     -0.12296 -0.01920
## freeEn1         -0.10229     -0.13542 -0.04101
## ant1             0.05114      0.01089  0.10197
## c7ad1            0.01165     -0.04995  0.03956
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.3
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.62839      4.51907  4.69888
## age_groupgr3039  0.01685     -0.04011  0.08383
## age_groupgr4049 -0.02397     -0.06517  0.01069
## age_groupgr5059 -0.02338     -0.14086  0.02430
## age_group60plus -0.01081     -0.13452  0.06941
## educ22           0.02482     -0.04118  0.09631
## educ23           0.11355      0.06286  0.19617
## selfhealthgood   0.06695      0.02032  0.11974
## smosttmedium     0.03621     -0.02492  0.10817
## smosttheavy      0.02579     -0.01913  0.10819
## b6ayes           0.04845     -0.00933  0.10348
## label11         -0.04903     -0.11332 -0.01453
## freeEn1         -0.11046     -0.15132 -0.03748
## ant1             0.03351      0.00261  0.09032
## c7ad1           -0.02115     -0.05091  0.02090
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.35
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.64179      4.59763  4.72188
## age_groupgr3039  0.03031     -0.05357  0.07431
## age_groupgr4049 -0.02384     -0.07943  0.00495
## age_groupgr5059 -0.02384     -0.12303  0.03652
## age_group60plus -0.00632     -0.12391  0.03695
## educ22           0.02080     -0.03858  0.06057
## educ23           0.10911      0.04592  0.16310
## selfhealthgood   0.06556      0.02314  0.10592
## smosttmedium     0.04173     -0.01199  0.10740
## smosttheavy      0.03945     -0.02145  0.10743
## b6ayes           0.04838     -0.01498  0.10138
## label11         -0.05982     -0.10848 -0.01835
## freeEn1         -0.10338     -0.15708 -0.04275
## ant1             0.04156      0.00118  0.07433
## c7ad1           -0.01448     -0.05334  0.01456
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.4
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.69665      4.60345  4.74102
## age_groupgr3039  0.02717     -0.03831  0.10119
## age_groupgr4049 -0.04382     -0.08790  0.00955
## age_groupgr5059 -0.04382     -0.09918  0.04291
## age_group60plus -0.03071     -0.10266  0.03283
## educ22           0.00722     -0.03665  0.06820
## educ23           0.09453      0.03314  0.15093
## selfhealthgood   0.05638      0.02479  0.10822
## smosttmedium     0.03175     -0.00396  0.09052
## smosttheavy      0.03865     -0.00791  0.09553
## b6ayes           0.05340      0.00563  0.09965
## label11         -0.05882     -0.12105 -0.01148
## freeEn1         -0.09937     -0.15600 -0.04520
## ant1             0.04136     -0.00123  0.08155
## c7ad1           -0.02559     -0.06681  0.01549
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.45
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.70407      4.61650  4.75136
## age_groupgr3039  0.02328     -0.02085  0.10731
## age_groupgr4049 -0.05251     -0.09313  0.01575
## age_groupgr5059 -0.02140     -0.11858  0.00882
## age_group60plus -0.03722     -0.07659  0.06267
## educ22           0.00350     -0.03772  0.07137
## educ23           0.08618      0.01816  0.15231
## selfhealthgood   0.06848      0.02569  0.10764
## smosttmedium     0.03333      0.00307  0.09761
## smosttheavy      0.05670      0.00405  0.10543
## b6ayes           0.06543      0.02039  0.11926
## label11         -0.07198     -0.11175 -0.00757
## freeEn1         -0.10201     -0.14538 -0.03195
## ant1             0.04741     -0.00091  0.07873
## c7ad1           -0.02808     -0.05611  0.02180
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.5
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.69412      4.62913  4.76234
## age_groupgr3039  0.07017     -0.00762  0.11965
## age_groupgr4049 -0.02611     -0.08464  0.02735
## age_groupgr5059 -0.01223     -0.10514  0.06287
## age_group60plus -0.00361     -0.09816  0.07310
## educ22           0.01193     -0.04384  0.05624
## educ23           0.10597      0.02678  0.18937
## selfhealthgood   0.07110      0.02635  0.11524
## smosttmedium     0.03412     -0.01380  0.09696
## smosttheavy      0.08018      0.02539  0.11943
## b6ayes           0.07304     -0.00478  0.12704
## label11         -0.07665     -0.12112  0.01765
## freeEn1         -0.09498     -0.14810 -0.01532
## ant1             0.02996     -0.02534  0.07243
## c7ad1           -0.02312     -0.06710  0.05301
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.55
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.68238      4.64525  4.78327
## age_groupgr3039  0.07299     -0.00859  0.10645
## age_groupgr4049 -0.01508     -0.10234  0.02243
## age_groupgr5059  0.02347     -0.10836  0.05260
## age_group60plus  0.00023     -0.10365  0.14939
## educ22           0.02912     -0.02585  0.06173
## educ23           0.14831      0.04161  0.20912
## selfhealthgood   0.06779      0.02842  0.09957
## smosttmedium     0.05080     -0.00151  0.08093
## smosttheavy      0.08089      0.03350  0.14809
## b6ayes           0.06190     -0.00739  0.10287
## label11         -0.07302     -0.11077  0.04160
## freeEn1         -0.08281     -0.14566 -0.00142
## ant1             0.02066     -0.02154  0.06808
## c7ad1            0.01465     -0.05023  0.06040
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.6
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.69942      4.64635  4.82672
## age_groupgr3039  0.05075     -0.01653  0.12946
## age_groupgr4049 -0.02190     -0.09561  0.03565
## age_groupgr5059  0.00319     -0.11474  0.13089
## age_group60plus  0.02509     -0.09696  0.16828
## educ22           0.02892     -0.04301  0.08117
## educ23           0.16224      0.01256  0.21244
## selfhealthgood   0.06405      0.02376  0.13080
## smosttmedium     0.05699     -0.02300  0.09488
## smosttheavy      0.13242      0.01469  0.16793
## b6ayes           0.06022     -0.00295  0.12851
## label11         -0.05677     -0.13893  0.05315
## freeEn1         -0.09321     -0.13587  0.02842
## ant1             0.02145     -0.03963  0.07624
## c7ad1            0.02573     -0.07209  0.08930
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.65
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.74441      4.68050  4.89209
## age_groupgr3039  0.01691     -0.05267  0.10686
## age_groupgr4049 -0.02897     -0.12869  0.00690
## age_groupgr5059  0.00048     -0.10182  0.10567
## age_group60plus  0.02172     -0.09181  0.12317
## educ22           0.02173     -0.08852  0.06915
## educ23           0.13116      0.00522  0.20437
## selfhealthgood   0.07044      0.02588  0.12200
## smosttmedium     0.02626     -0.04559  0.06434
## smosttheavy      0.13317      0.05073  0.17826
## b6ayes           0.05922      0.01355  0.10710
## label11         -0.02848     -0.15143  0.06033
## freeEn1         -0.03164     -0.13785  0.06392
## ant1             0.01875     -0.03840  0.06835
## c7ad1            0.02547     -0.06401  0.08896
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.7
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.84415      4.72392  5.03597
## age_groupgr3039 -0.01733     -0.07560  0.06377
## age_groupgr4049 -0.10246     -0.14573 -0.00057
## age_groupgr5059 -0.02120     -0.13075  0.09384
## age_group60plus -0.00021     -0.10649  0.11548
## educ22           0.02833     -0.08993  0.09084
## educ23           0.12943      0.01494  0.18537
## selfhealthgood   0.09067      0.02376  0.13576
## smosttmedium     0.00452     -0.10142  0.06439
## smosttheavy      0.11079      0.04363  0.19912
## b6ayes           0.04269      0.00267  0.09999
## label11         -0.01219     -0.11919  0.06466
## freeEn1         -0.01253     -0.06753  0.07692
## ant1            -0.02738     -0.05907  0.07696
## c7ad1            0.02986     -0.05416  0.08291
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.75
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.92917      4.78370  5.03762
## age_groupgr3039 -0.02281     -0.12220  0.04341
## age_groupgr4049 -0.12399     -0.18326 -0.01014
## age_groupgr5059 -0.05394     -0.14683  0.04638
## age_group60plus -0.02148     -0.14957  0.10207
## educ22           0.01410     -0.08124  0.12073
## educ23           0.07281     -0.01582  0.17435
## selfhealthgood   0.07720     -0.00562  0.12324
## smosttmedium    -0.02142     -0.12731  0.07491
## smosttheavy      0.07281      0.00062  0.19915
## b6ayes           0.03675     -0.02471  0.11453
## label11         -0.00871     -0.09766  0.05703
## freeEn1          0.00698     -0.06362  0.09088
## ant1             0.00891     -0.05427  0.05700
## c7ad1            0.01052     -0.04921  0.09845
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.8
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      4.99658      4.88549  5.10263
## age_groupgr3039 -0.00327     -0.08757  0.06544
## age_groupgr4049 -0.05255     -0.16680 -0.00103
## age_groupgr5059 -0.04041     -0.13253  0.01804
## age_group60plus -0.06053     -0.11755  0.06841
## educ22           0.01504     -0.06191  0.06097
## educ23           0.06150     -0.00981  0.14048
## selfhealthgood   0.02505     -0.00473  0.07195
## smosttmedium    -0.02661     -0.11363  0.01367
## smosttheavy      0.06025     -0.01043  0.17260
## b6ayes           0.04041     -0.03732  0.09429
## label11         -0.02208     -0.12054  0.02247
## freeEn1          0.01827     -0.05064  0.07114
## ant1            -0.00728     -0.04636  0.06717
## c7ad1            0.02429     -0.04995  0.07120
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.85
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      5.07320      4.96908  5.17210
## age_groupgr3039  0.01142     -0.05003  0.20968
## age_groupgr4049 -0.02681     -0.10646  0.03340
## age_groupgr5059 -0.02681     -0.08428  0.04362
## age_group60plus -0.02409     -0.10005  0.02783
## educ22           0.01022     -0.05807  0.07665
## educ23           0.03781     -0.00493  0.11052
## selfhealthgood   0.01119     -0.03776  0.07074
## smosttmedium    -0.03671     -0.11158  0.00121
## smosttheavy      0.01316     -0.05641  0.12208
## b6ayes           0.01594     -0.01875  0.11936
## label11         -0.04123     -0.11608  0.01404
## freeEn1          0.00318     -0.03888  0.08373
## ant1             0.00222     -0.05207  0.05881
## c7ad1            0.01029     -0.01952  0.08037
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.9
## 
## Coefficients:
##                 coefficients lower bd upper bd
## (Intercept)      5.20574      5.03681  5.33833
## age_groupgr3039  0.11432     -0.04343  0.24918
## age_groupgr4049  0.00518     -0.13447  0.10786
## age_groupgr5059  0.05268     -0.06554  0.26193
## age_group60plus -0.00005     -0.13212  0.32766
## educ22          -0.04267     -0.18594  0.10362
## educ23           0.01933     -0.09073  0.16028
## selfhealthgood   0.00537     -0.05663  0.10870
## smosttmedium    -0.13517     -0.20815 -0.03905
## smosttheavy     -0.03295     -0.18626  0.15386
## b6ayes           0.07949     -0.01367  0.17476
## label11         -0.12122     -0.19229  0.06932
## freeEn1         -0.01410     -0.09392  0.09928
## ant1            -0.00877     -0.08065  0.07386
## c7ad1           -0.01142     -0.08619  0.08804
## 
## Call: rq(formula = logC1 ~ age_group + educ2 + selfhealth + smostt + 
##     b6a + label1 + freeEn + ant + c7ad, tau = seq(0.05, 0.95, 
##     by = 0.05), data = mydata)
## 
## tau: [1] 0.95
## 
## Coefficients:
##                 coefficients   lower bd       upper bd      
## (Intercept)       5.320450e+00   5.170560e+00   5.705200e+00
## age_groupgr3039   1.245000e-01   2.492000e-02   3.686400e-01
## age_groupgr4049   1.260000e-03  -1.533000e-01   1.384700e-01
## age_groupgr5059   6.718000e-02  -1.098300e-01   3.403900e-01
## age_group60plus  -1.040500e-01  -2.032300e-01  1.797693e+308
## educ22           -4.446000e-02  -3.327500e-01   1.329100e-01
## educ23           -3.728000e-02  -3.326100e-01   4.066000e-02
## selfhealthgood    2.803000e-02  -5.029000e-02   1.221000e-01
## smosttmedium     -1.968100e-01  -3.297000e-01   1.485000e-02
## smosttheavy       5.100000e-04  -2.041200e-01   1.763600e-01
## b6ayes            7.027000e-02   2.713000e-02   3.870700e-01
## label11          -4.405000e-02  -1.964400e-01   2.152300e-01
## freeEn1          -2.929000e-02  -1.223400e-01   5.802000e-02
## ant1             -3.596000e-02  -6.639000e-02   5.656000e-02
## c7ad1            -1.260000e-03  -1.154300e-01   1.305100e-01

`` #plot

quantreg.plot <- summary(quantreg.all)

plot(quantreg.plot)

```