library(pacman)
p_load(googlesheets, kirkegaard)
options(digits = 2)
googlesheets::gs_auth()
d = gs_url("https://docs.google.com/spreadsheets/d/1knKg2WG7ZW5cIeFJeNfdXMSAMvp_t5ny0baaOV9OD1M/edit#gid=0") %>% gs_read()
## Sheet-identifying info appears to be a browser URL.
## googlesheets will attempt to extract sheet key from the URL.
## Putative key: 1knKg2WG7ZW5cIeFJeNfdXMSAMvp_t5ny0baaOV9OD1M
## Sheet successfully identified: "Moscow districts"
## Accessing worksheet titled 'Sheet1'.
## Parsed with column specification:
## cols(
## District = col_character(),
## `Mean score` = col_double(),
## Population = col_double(),
## `% tertiary` = col_double(),
## `% PhD` = col_integer(),
## Zhirinovskiy = col_double(),
## Zjuganov = col_double(),
## Mironov = col_double(),
## Prokhorov = col_double(),
## Putin = col_double()
## )
#rename and recode
d %<>% mutate(
tertiary_pct = `% tertiary`/100,
PHD_pct = `% PhD`/100,
mean_score = `Mean score`,
Zhirinovskiy = Zhirinovskiy/100,
Zjuganov = Zjuganov/100,
Mironov = Mironov/100,
Prokhorov = Prokhorov/100,
Putin = Putin/100
)
#cors
wtd.cors(d[-1])
## Mean score Population % tertiary % PhD Zhirinovskiy Zjuganov
## Mean score 1.000 0.3129 0.436 0.43 -0.40 0.188
## Population 0.313 1.0000 -0.172 -0.16 0.12 0.196
## % tertiary 0.436 -0.1718 1.000 0.71 -0.78 0.085
## % PhD 0.433 -0.1554 0.706 1.00 -0.82 0.167
## Zhirinovskiy -0.404 0.1150 -0.782 -0.82 1.00 -0.293
## Zjuganov 0.188 0.1958 0.085 0.17 -0.29 1.000
## Mironov 0.052 0.0098 0.098 0.23 -0.23 0.460
## Prokhorov 0.469 -0.1491 0.832 0.83 -0.91 0.105
## Putin -0.495 0.0799 -0.778 -0.81 0.88 -0.367
## tertiary_pct 0.436 -0.1718 1.000 0.71 -0.78 0.085
## PHD_pct 0.433 -0.1554 0.706 1.00 -0.82 0.167
## mean_score 1.000 0.3129 0.436 0.43 -0.40 0.188
## Mironov Prokhorov Putin tertiary_pct PHD_pct mean_score
## Mean score 0.0523 0.47 -0.50 0.436 0.43 1.000
## Population 0.0098 -0.15 0.08 -0.172 -0.16 0.313
## % tertiary 0.0984 0.83 -0.78 1.000 0.71 0.436
## % PhD 0.2253 0.83 -0.81 0.706 1.00 0.433
## Zhirinovskiy -0.2347 -0.91 0.88 -0.782 -0.82 -0.404
## Zjuganov 0.4603 0.10 -0.37 0.085 0.17 0.188
## Mironov 1.0000 0.17 -0.35 0.098 0.23 0.052
## Prokhorov 0.1749 1.00 -0.95 0.832 0.83 0.469
## Putin -0.3542 -0.95 1.00 -0.778 -0.81 -0.495
## tertiary_pct 0.0984 0.83 -0.78 1.000 0.71 0.436
## PHD_pct 0.2253 0.83 -0.81 0.706 1.00 0.433
## mean_score 0.0523 0.47 -0.50 0.436 0.43 1.000
#plot Putin votes
GG_scatter(d, "tertiary_pct", "Putin", case_names = "District") +
scale_x_continuous("% of population with tertiary degree", labels = scales::percent) +
scale_y_continuous("% voted for Putin in Russian 2012 election", labels = scales::percent)

GG_save("figs/vote_Putin_tertiary.png")
GG_scatter(d, "PHD_pct", "Putin", case_names = "District") +
scale_x_continuous("% of population with a Ph.D. degree", labels = scales::percent) +
scale_y_continuous("% voted for Putin in Russian 2012 election", labels = scales::percent)

GG_save("figs/vote_Putin_phd.png")