Lab 1: Principal Components Analysis
states=row.names(USArrests)
states
[1] "Alabama" "Alaska" "Arizona" "Arkansas" "California" "Colorado" "Connecticut"
[8] "Delaware" "Florida" "Georgia" "Hawaii" "Idaho" "Illinois" "Indiana"
[15] "Iowa" "Kansas" "Kentucky" "Louisiana" "Maine" "Maryland" "Massachusetts"
[22] "Michigan" "Minnesota" "Mississippi" "Missouri" "Montana" "Nebraska" "Nevada"
[29] "New Hampshire" "New Jersey" "New Mexico" "New York" "North Carolina" "North Dakota" "Ohio"
[36] "Oklahoma" "Oregon" "Pennsylvania" "Rhode Island" "South Carolina" "South Dakota" "Tennessee"
[43] "Texas" "Utah" "Vermont" "Virginia" "Washington" "West Virginia" "Wisconsin"
[50] "Wyoming"
names(USArrests)
[1] "Murder" "Assault" "UrbanPop" "Rape"
apply(USArrests,2, mean)
Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232
apply(USArrests,2, var)
Murder Assault UrbanPop Rape
18.97047 6945.16571 209.51878 87.72916
pr.out = prcomp (USArrests, scale =TRUE)
names(pr.out )
[1] "sdev" "rotation" "center" "scale" "x"
pr.out$center
Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232
pr.out$scale
Murder Assault UrbanPop Rape
4.355510 83.337661 14.474763 9.366385
pr.out$rotation
PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432
dim(pr.out$x )
[1] 50 4
biplot (pr.out , scale =0)

pr.out$rotation=-pr.out$rotation
pr.out$x=-pr.out$x
biplot (pr.out , scale =0)

pr.out$sdev
[1] 1.5748783 0.9948694 0.5971291 0.4164494
pr.var =pr.out$sdev ^2
pr.var
[1] 2.4802416 0.9897652 0.3565632 0.1734301
pve=pr.var/sum(pr.var )
pve
[1] 0.62006039 0.24744129 0.08914080 0.04335752
plot(pve , xlab="Principal Component", ylab="Proportion of
Variance Explained", ylim=c(0,1) ,type="b")

plot(cumsum (pve ), xlab="Principal Component", ylab = "Cumulative Proportion of Variance Explained", ylim=c(0,1) ,
type="b")

a=c(1,2,8,-3)
cumsum (a)
[1] 1 3 11 8
LS0tDQp0aXRsZTogIkxhYm9yYXRvcmlvIENhcO10dWxvIDEwLjQiDQpzdWJ0aXRsZTogIkFsZWphbmRyYSBDZXJtZfFvIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyMjTGFiIDE6IFByaW5jaXBhbCBDb21wb25lbnRzIEFuYWx5c2lzDQoNCmBgYHtyfQ0Kc3RhdGVzPXJvdy5uYW1lcyhVU0FycmVzdHMpDQpzdGF0ZXMNCmBgYA0KDQpgYGB7cn0NCm5hbWVzKFVTQXJyZXN0cykNCmBgYA0KDQpgYGB7cn0NCmFwcGx5KFVTQXJyZXN0cywyLCBtZWFuKQ0KYGBgDQoNCmBgYHtyfQ0KYXBwbHkoVVNBcnJlc3RzLDIsIHZhcikNCmBgYA0KDQpgYGB7cn0NCnByLm91dCA9IHByY29tcCAoVVNBcnJlc3RzLCBzY2FsZSA9VFJVRSkNCmBgYA0KDQpgYGB7cn0NCm5hbWVzKHByLm91dCApDQpgYGANCg0KYGBge3J9DQpwci5vdXQkY2VudGVyDQpgYGANCg0KYGBge3J9DQpwci5vdXQkc2NhbGUNCmBgYA0KDQpgYGB7cn0NCnByLm91dCRyb3RhdGlvbg0KYGBgDQoNCmBgYHtyfQ0KZGltKHByLm91dCR4ICkNCmBgYA0KDQpgYGB7cn0NCmJpcGxvdCAocHIub3V0ICwgc2NhbGUgPTApDQpgYGANCg0KYGBge3J9DQpwci5vdXQkcm90YXRpb249LXByLm91dCRyb3RhdGlvbg0KcHIub3V0JHg9LXByLm91dCR4DQpiaXBsb3QgKHByLm91dCAsIHNjYWxlID0wKQ0KYGBgDQoNCmBgYHtyfQ0KcHIub3V0JHNkZXYNCmBgYA0KDQpgYGB7cn0NCnByLnZhciA9cHIub3V0JHNkZXYgXjINCnByLnZhcg0KYGBgDQoNCmBgYHtyfQ0KcHZlPXByLnZhci9zdW0ocHIudmFyICkNCnB2ZQ0KYGBgDQoNCmBgYHtyfQ0KcGxvdChwdmUgLCB4bGFiPSJQcmluY2lwYWwgQ29tcG9uZW50IiwgeWxhYj0iUHJvcG9ydGlvbiBvZg0KVmFyaWFuY2UgRXhwbGFpbmVkIiwgeWxpbT1jKDAsMSkgLHR5cGU9ImIiKQ0KcGxvdChjdW1zdW0gKHB2ZSApLCB4bGFiPSJQcmluY2lwYWwgQ29tcG9uZW50IiwgeWxhYiA9ICJDdW11bGF0aXZlIFByb3BvcnRpb24gb2YgVmFyaWFuY2UgRXhwbGFpbmVkIiwgeWxpbT1jKDAsMSkgLA0KdHlwZT0iYiIpDQpgYGANCg0KYGBge3J9DQphPWMoMSwyLDgsLTMpDQpjdW1zdW0gKGEpDQpgYGANCg0K