x <- c(1,3,2,5)
x
[1] 1 3 2 5
x = c(1,6,2)
x
[1] 1 6 2
y = c(1,4,3)
length (x)
[1] 3
length (y)
[1] 3
x+y
[1] 2 10 5
ls()
[1] "A" "Auto" "f" "fa" "x" "y"
rm(x,y)
character (0)
character(0)
rm(list=ls())
?matrix
x=matrix (data=c(1,2,3,4) , nrow=2, ncol =2)
x
[,1] [,2]
[1,] 1 3
[2,] 2 4
x=matrix (c(1,2,3,4) ,2,2)
matrix (c(1,2,3,4) ,2,2,byrow =TRUE)
[,1] [,2]
[1,] 1 2
[2,] 3 4
sqrt(x)
[,1] [,2]
[1,] 1.000000 1.732051
[2,] 1.414214 2.000000
x^2
[,1] [,2]
[1,] 1 9
[2,] 4 16
x=rnorm (50)
y=x+rnorm (50, mean=50, sd=.1)
cor(x,y)
[1] 0.995529
set.seed (1303)
rnorm (50)
[1] -1.1439763145 1.3421293656 2.1853904757 0.5363925179 0.0631929665 0.5022344825 -0.0004167247
[8] 0.5658198405 -0.5725226890 -1.1102250073 -0.0486871234 -0.6956562176 0.8289174803 0.2066528551
[15] -0.2356745091 -0.5563104914 -0.3647543571 0.8623550343 -0.6307715354 0.3136021252 -0.9314953177
[22] 0.8238676185 0.5233707021 0.7069214120 0.4202043256 -0.2690521547 -1.5103172999 -0.6902124766
[29] -0.1434719524 -1.0135274099 1.5732737361 0.0127465055 0.8726470499 0.4220661905 -0.0188157917
[36] 2.6157489689 -0.6931401748 -0.2663217810 -0.7206364412 1.3677342065 0.2640073322 0.6321868074
[43] -1.3306509858 0.0268888182 1.0406363208 1.3120237985 -0.0300020767 -0.2500257125 0.0234144857
[50] 1.6598706557
set.seed (3)
y=rnorm (100)
mean(y)
[1] 0.01103557
var(y)
[1] 0.7328675
sqrt(var(y))
[1] 0.8560768
sd(y)
[1] 0.8560768
x=rnorm (100)
y=rnorm (100)
plot(x,y)

plot(x,y,xlab=" this is the x-axis",ylab=" this is the y-axis",main=" Plot of X vs Y")
pdf (" Figure .pdf ")
plot(x,y,col =" green ")
dev.off ()
png
2

x=seq (1 ,10)
x
[1] 1 2 3 4 5 6 7 8 9 10
x=1:10
x
[1] 1 2 3 4 5 6 7 8 9 10
x=seq(-pi ,pi ,length =50)
y=x
f=outer(x,y,function (x,y)cos(y)/(1+x^2))
contour (x,y,f)
contour (x,y,f,nlevels =45, add=T)

fa=(f-t(f))/2
contour (x,y,fa,nlevels =15)

image(x,y,fa)

persp(x,y,fa)

persp(x,y,fa ,theta =30)

persp(x,y,fa ,theta =30, phi =20)

persp(x,y,fa ,theta =30, phi =70)

persp(x,y,fa ,theta =30, phi =40)

A=matrix (1:16 ,4 ,4)
A
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
A[2,3]
[1] 10
A[c(1,3) ,c(2,4) ]
[,1] [,2]
[1,] 5 13
[2,] 7 15
A[1:3 ,2:4]
[,1] [,2] [,3]
[1,] 5 9 13
[2,] 6 10 14
[3,] 7 11 15
A[1:2 ,]
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
A[ ,1:2]
[,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8
A[1,]
[1] 1 5 9 13
A[-c(1,3) ,]
[,1] [,2] [,3] [,4]
[1,] 2 6 10 14
[2,] 4 8 12 16
A[-c(1,3) ,-c(1,3,4)]
[1] 6 8
dim(A)
[1] 4 4
#Auto=read.table ("Auto.data ")
#fix(Auto)
#Auto=read.table ("Auto.data", header =T,na.strings ="?")
#fix(Auto)
#Auto=read.csv (" Auto.csv", header =T,na.strings ="?")
#fix(Auto)
dim(Auto)
[1] 392 9
Auto [1:4 ,]
Auto=na.omit(Auto)
dim(Auto)
[1] 392 9
names(Auto)
[1] "mpg" "cylinders" "displacement" "horsepower" "weight" "acceleration" "year"
[8] "origin" "name"
plot(cylinders , mpg)

plot(Auto$cylinders , Auto$mpg )

attach (Auto)
The following objects are masked from Auto (pos = 4):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 33):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 34):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 35):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 36):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 37):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following object is masked from package:ggplot2:
mpg
The following objects are masked from Auto (pos = 46):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 48):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
plot(cylinders , mpg)

cylinders =as.factor (cylinders )
plot(cylinders , mpg)

plot(cylinders , mpg , col ="red ")

plot(cylinders , mpg , col ="red", varwidth =T)

plot(cylinders , mpg , col ="red", varwidth =T,horizontal =T)

plot(cylinders , mpg , col ="red", varwidth =T, xlab=" cylinders ",ylab ="MPG ")

hist(mpg)

hist(mpg ,col =2)

hist(mpg ,col =2, breaks =15)

pairs(Auto)

pairs(~ mpg + displacement + horsepower + weight + acceleration , Auto)

plot(horsepower ,mpg)
identify (horsepower ,mpg ,name)
integer(0)

summary (Auto)
mpg cylinders displacement horsepower weight acceleration
Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613 Min. : 8.00
1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225 1st Qu.:13.78
Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804 Median :15.50
Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978 Mean :15.54
3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615 3rd Qu.:17.02
Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140 Max. :24.80
year origin name
Min. :70.00 Min. :1.000 amc matador : 5
1st Qu.:73.00 1st Qu.:1.000 ford pinto : 5
Median :76.00 Median :1.000 toyota corolla : 5
Mean :75.98 Mean :1.577 amc gremlin : 4
3rd Qu.:79.00 3rd Qu.:2.000 amc hornet : 4
Max. :82.00 Max. :3.000 chevrolet chevette: 4
(Other) :365
summary (mpg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
9.00 17.00 22.75 23.45 29.00 46.60
LS0tDQp0aXRsZTogIkxhYjogSW50cm9kdWN0aW9uIHRvIFIiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCnggPC0gYygxLDMsMiw1KQ0KeA0KeCA9IGMoMSw2LDIpDQp4DQp5ID0gYygxLDQsMykNCmxlbmd0aCAoeCkNCmxlbmd0aCAoeSkNCngreQ0KbHMoKQ0Kcm0oeCx5KQ0KY2hhcmFjdGVyICgwKQ0Kcm0obGlzdD1scygpKQ0KP21hdHJpeA0KeD1tYXRyaXggKGRhdGE9YygxLDIsMyw0KSAsIG5yb3c9MiwgbmNvbCA9MikNCngNCng9bWF0cml4IChjKDEsMiwzLDQpICwyLDIpDQptYXRyaXggKGMoMSwyLDMsNCkgLDIsMixieXJvdyA9VFJVRSkNCnNxcnQoeCkNCnheMg0KeD1ybm9ybSAoNTApDQp5PXgrcm5vcm0gKDUwLCBtZWFuPTUwLCBzZD0uMSkNCmNvcih4LHkpDQpzZXQuc2VlZCAoMTMwMykNCnJub3JtICg1MCkNCnNldC5zZWVkICgzKQ0KeT1ybm9ybSAoMTAwKQ0KbWVhbih5KQ0KdmFyKHkpDQpzcXJ0KHZhcih5KSkNCnNkKHkpDQp4PXJub3JtICgxMDApDQp5PXJub3JtICgxMDApDQpwbG90KHgseSkNCnBsb3QoeCx5LHhsYWI9IiB0aGlzIGlzIHRoZSB4LWF4aXMiLHlsYWI9IiB0aGlzIGlzIHRoZSB5LWF4aXMiLG1haW49IiBQbG90IG9mIFggdnMgWSIpDQpwZGYgKCIgRmlndXJlIC5wZGYgIikNCnBsb3QoeCx5LGNvbCA9IiBncmVlbiAiKQ0KZGV2Lm9mZiAoKQ0KeD1zZXEgKDEgLDEwKQ0KeA0KeD0xOjEwDQp4DQp4PXNlcSgtcGkgLHBpICxsZW5ndGggPTUwKQ0KeT14DQpmPW91dGVyKHgseSxmdW5jdGlvbiAoeCx5KWNvcyh5KS8oMSt4XjIpKQ0KY29udG91ciAoeCx5LGYpDQpjb250b3VyICh4LHksZixubGV2ZWxzID00NSwgYWRkPVQpDQpmYT0oZi10KGYpKS8yDQpjb250b3VyICh4LHksZmEsbmxldmVscyA9MTUpDQppbWFnZSh4LHksZmEpDQpwZXJzcCh4LHksZmEpDQpwZXJzcCh4LHksZmEgLHRoZXRhID0zMCkNCnBlcnNwKHgseSxmYSAsdGhldGEgPTMwLCBwaGkgPTIwKQ0KcGVyc3AoeCx5LGZhICx0aGV0YSA9MzAsIHBoaSA9NzApDQpwZXJzcCh4LHksZmEgLHRoZXRhID0zMCwgcGhpID00MCkNCkE9bWF0cml4ICgxOjE2ICw0ICw0KQ0KQQ0KQVsyLDNdDQpBW2MoMSwzKSAsYygyLDQpIF0NCkFbMTozICwyOjRdDQpBWzE6MiAsXQ0KQVsgLDE6Ml0NCkFbMSxdDQpBWy1jKDEsMykgLF0NCkFbLWMoMSwzKSAsLWMoMSwzLDQpXQ0KZGltKEEpDQojQXV0bz1yZWFkLnRhYmxlICgiQXV0by5kYXRhICIpDQojZml4KEF1dG8pDQojQXV0bz1yZWFkLnRhYmxlICgiQXV0by5kYXRhIiwgaGVhZGVyID1ULG5hLnN0cmluZ3MgPSI/IikNCiNmaXgoQXV0bykNCiNBdXRvPXJlYWQuY3N2ICgiIEF1dG8uY3N2IiwgaGVhZGVyID1ULG5hLnN0cmluZ3MgPSI/IikNCiNmaXgoQXV0bykNCmRpbShBdXRvKQ0KQXV0byBbMTo0ICxdDQpBdXRvPW5hLm9taXQoQXV0bykNCmRpbShBdXRvKQ0KbmFtZXMoQXV0bykNCnBsb3QoY3lsaW5kZXJzICwgbXBnKQ0KcGxvdChBdXRvJGN5bGluZGVycyAsIEF1dG8kbXBnICkNCmF0dGFjaCAoQXV0bykNCnBsb3QoY3lsaW5kZXJzICwgbXBnKQ0KY3lsaW5kZXJzID1hcy5mYWN0b3IgKGN5bGluZGVycyApDQpwbG90KGN5bGluZGVycyAsIG1wZykNCnBsb3QoY3lsaW5kZXJzICwgbXBnICwgY29sID0icmVkICIpDQpwbG90KGN5bGluZGVycyAsIG1wZyAsIGNvbCA9InJlZCIsIHZhcndpZHRoID1UKQ0KcGxvdChjeWxpbmRlcnMgLCBtcGcgLCBjb2wgPSJyZWQiLCB2YXJ3aWR0aCA9VCxob3Jpem9udGFsID1UKQ0KcGxvdChjeWxpbmRlcnMgLCBtcGcgLCBjb2wgPSJyZWQiLCB2YXJ3aWR0aCA9VCwgeGxhYj0iIGN5bGluZGVycyAiLHlsYWIgPSJNUEcgIikNCmhpc3QobXBnKQ0KaGlzdChtcGcgLGNvbCA9MikNCmhpc3QobXBnICxjb2wgPTIsIGJyZWFrcyA9MTUpDQpwYWlycyhBdXRvKQ0KcGFpcnMoPz8/IG1wZyArIGRpc3BsYWNlbWVudCArIGhvcnNlcG93ZXIgKyB3ZWlnaHQgKyBhY2NlbGVyYXRpb24gLCBBdXRvKQ0KcGxvdChob3JzZXBvd2VyICxtcGcpDQppZGVudGlmeSAoaG9yc2Vwb3dlciAsbXBnICxuYW1lKQ0Kc3VtbWFyeSAoQXV0bykNCnN1bW1hcnkgKG1wZykNCmBgYA0K