Principal Components Analysis
states =row.names(USArrests )
states
[1] "Alabama" "Alaska" "Arizona" "Arkansas" "California" "Colorado"
[7] "Connecticut" "Delaware" "Florida" "Georgia" "Hawaii" "Idaho"
[13] "Illinois" "Indiana" "Iowa" "Kansas" "Kentucky" "Louisiana"
[19] "Maine" "Maryland" "Massachusetts" "Michigan" "Minnesota" "Mississippi"
[25] "Missouri" "Montana" "Nebraska" "Nevada" "New Hampshire" "New Jersey"
[31] "New Mexico" "New York" "North Carolina" "North Dakota" "Ohio" "Oklahoma"
[37] "Oregon" "Pennsylvania" "Rhode Island" "South Carolina" "South Dakota" "Tennessee"
[43] "Texas" "Utah" "Vermont" "Virginia" "Washington" "West Virginia"
[49] "Wisconsin" "Wyoming"
names(USArrests )
[1] "Murder" "Assault" "UrbanPop" "Rape"
apply(USArrests , 2, mean)
Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232
apply(USArrests , 2, var)
Murder Assault UrbanPop Rape
18.97047 6945.16571 209.51878 87.72916
pr.out =prcomp (USArrests , scale =TRUE)
names(pr.out )
[1] "sdev" "rotation" "center" "scale" "x"
pr.out$center
Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232
pr.out$scale
Murder Assault UrbanPop Rape
4.355510 83.337661 14.474763 9.366385
pr.out$rotation
PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432
dim(pr.out$x )
[1] 50 4
biplot (pr.out , scale =0)

pr.out$rotation=-pr.out$rotation
pr.out$x=-pr.out$x
biplot (pr.out , scale =0)

pr.out$sdev
[1] 1.5748783 0.9948694 0.5971291 0.4164494
pr.var =pr.out$sdev ^2
pr.var
[1] 2.4802416 0.9897652 0.3565632 0.1734301
pve=pr.var/sum(pr.var )
pve
[1] 0.62006039 0.24744129 0.08914080 0.04335752
plot(pve , xlab="Principal Component", ylab="Proportion of Variance Explained", ylim=c(0,1) ,type="b")

plot(cumsum (pve ), xlab="Principal Component", ylab ="Cumulative Proportion of Variance Explained", ylim=c(0,1) ,type="b")

a=c(1,2,8,-3)
cumsum (a)
[1] 1 3 11 8
LS0tDQp0aXRsZTogIkxhYm9yYXRvcmlvIDEwLjQiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkoTUFTUykNCmxpYnJhcnkoSVNMUikNCmxpYnJhcnkoY2FyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoY2FyZXQpDQpsaWJyYXJ5KG1sYmVuY2gpDQpsaWJyYXJ5KGNhVG9vbHMpDQpsaWJyYXJ5ICh0cmVlKQ0KYGBgDQojI1ByaW5jaXBhbCBDb21wb25lbnRzIEFuYWx5c2lzDQpgYGB7cn0NCnN0YXRlcyA9cm93Lm5hbWVzKFVTQXJyZXN0cyApDQpzdGF0ZXMNCm5hbWVzKFVTQXJyZXN0cyApDQphcHBseShVU0FycmVzdHMgLCAyLCBtZWFuKQ0KYXBwbHkoVVNBcnJlc3RzICwgMiwgdmFyKQ0KcHIub3V0ID1wcmNvbXAgKFVTQXJyZXN0cyAsIHNjYWxlID1UUlVFKQ0KbmFtZXMocHIub3V0ICkNCnByLm91dCRjZW50ZXINCnByLm91dCRzY2FsZQ0KcHIub3V0JHJvdGF0aW9uDQpkaW0ocHIub3V0JHggKQ0KYmlwbG90IChwci5vdXQgLCBzY2FsZSA9MCkNCnByLm91dCRyb3RhdGlvbj0tcHIub3V0JHJvdGF0aW9uDQpwci5vdXQkeD0tcHIub3V0JHgNCmJpcGxvdCAocHIub3V0ICwgc2NhbGUgPTApDQpwci5vdXQkc2Rldg0KcHIudmFyID1wci5vdXQkc2RldiBeMg0KcHIudmFyDQpwdmU9cHIudmFyL3N1bShwci52YXIgKQ0KcHZlDQpwbG90KHB2ZSAsIHhsYWI9IlByaW5jaXBhbCBDb21wb25lbnQiLCB5bGFiPSJQcm9wb3J0aW9uIG9mIFZhcmlhbmNlIEV4cGxhaW5lZCIsIHlsaW09YygwLDEpICx0eXBlPSJiIikNCnBsb3QoY3Vtc3VtIChwdmUgKSwgeGxhYj0iUHJpbmNpcGFsIENvbXBvbmVudCIsIHlsYWIgPSJDdW11bGF0aXZlIFByb3BvcnRpb24gb2YgVmFyaWFuY2UgRXhwbGFpbmVkIiwgeWxpbT1jKDAsMSkgLHR5cGU9ImIiKQ0KYT1jKDEsMiw4LC0zKQ0KY3Vtc3VtIChhKQ0KYGBgDQo=