This document depends on the following packages:
library(devtools)
library(Biobase)
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, cbind, colnames,
## do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, lengths, Map, mapply,
## match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
## Position, rank, rbind, Reduce, rownames, sapply, setdiff,
## sort, table, tapply, union, unique, unsplit, which, which.max,
## which.min
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
module 2, quiz question #2
con =url("http://bowtie-bio.sourceforge.net/recount/ExpressionSets/montpick_eset.RData")
load(file = con)
close(con)
mp = montpick.eset
pdata=pData(mp) # Phenotype data set
edata=as.data.frame(exprs(mp)) # Experiment data set
fdata = fData(mp) # Feature data set
ls()
## [1] "con" "edata" "fdata" "montpick.eset"
## [5] "mp" "pdata"
dim(edata)
## [1] 52580 129
edata
summary(edata)
Q. Perform the log2(data + 1) transform and subtract row means from the samples. Set the seed to 333 and use k-means to cluster the samples into two clusters. Use svd to calculate the singular vectors. What is the correlation between the first singular vector and the sample clustering indicator?
K-means clustering: Now we can perform k-means clustering. By default, the rows are clustered. You can either input the cluster means (often unknown) or the number of clusters.
edata = log2(edata + 1)
edata_centered = edata - rowMeans(edata)
set.seed(333)
kmeans1 = kmeans(edata, centers = 2)
names(kmeans1)
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
matplot(t(kmeans1$centers), col = 1:3, type = "l", lwd = 3)
svd_centered = svd(edata_centered)
names(svd_centered)
## [1] "d" "u" "v"
table(kmeans1$cluster)
##
## 1 2
## 47061 5519
47061/(47061+5519)
## [1] 0.8950361
sessionInfo()
## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04 LTS
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] Biobase_2.34.0 BiocGenerics_0.20.0 devtools_1.13.2
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.11 digest_0.6.12 withr_1.0.2 rprojroot_1.2
## [5] backports_1.1.0 magrittr_1.5 evaluate_0.10 stringi_1.1.5
## [9] rmarkdown_1.5 tools_3.3.1 stringr_1.2.0 yaml_2.1.14
## [13] memoise_1.1.0 htmltools_0.3.6 knitr_1.16