Answer as many questions as you can

  1. You are making a Dashboard for the Claims team of ABC insurance company. ABC operates in Asian, Europe and Latin America. The Global Head for Claims wants to understand how claims are being handled across product lines and Geographies at a glance. You are tasked with the design and development of such a dashboard. Please list down your main considerations
    • KPIs to include in the Dashboard
    • Design of front end

  1. Below is a small dataset
    • List factors that lead to higher loss amounts - State your hypotheses such that they can be tested using the data below
    • Does having an attorney result in greater compensation for the claimant?
    • Set up an EDA (a lit of hypotheses) to determine the role played by an attorney in claims settlement process
##    CASENUM ATTORNEY CLMSEX MARITAL CLMINSUR SEATBELT CLMAGE   LOSS
## 1        5        1      1      NA        2        1     50 34.940
## 2       13        2      2       2        1        1     28 10.892
## 3       66        2      1       2        2        1      5  0.330
## 4       71        1      1       1        2        2     32 11.037
## 5       96        2      1       4        2        1     30  0.138
## 6       97        1      2       1        2        1     35  0.309
## 7      120        1      1       2        2        1     19  3.538
## 8      136        1      2       2        2        1     34  4.882
## 9      152        2      2       2        2        1     61  0.874
## 10     155        2      1       2        2        1     NA  1.351

  1. Using the data below will you be able to test the following hypotheses? (Answer Yes/No)
    • State X has a higher per capita claim amount than the national average
    • Old people claim more in Auto insurance than Young people
    • State X has more “higher than national average” claims than any other state
##       STATE CLASS GENDER AGE    PAID
## 1  STATE 14   C6       M  97 1134.44
## 2  STATE 15   C6       M  96 3761.24
## 3  STATE 15   C11      M  95 7842.31
## 4  STATE 15   F6       F  95 2384.67
## 5  STATE 15   F6       M  95  650.00
## 6  STATE 15   F6       M  95  391.12
## 7  STATE 15   C11      M  94 3775.83
## 8  STATE 10   C6       M  94  415.35
## 9  STATE 14   C11      M  93 2283.56
## 10 STATE 03   C11      M  93  665.48

  1. Take a look at the data below to understand the dataset. And answer the questions using your choice of language. The dataset will be provided to you.
    • Do a quick analysis to validate the hypothesis - Rural customers are less valuable than other customers
    • Do a quick analysis to validate the hypothesis - Education positively impacts the Lifetime value of a customer
    • Looking at the dataset below write down 5 hypotheses as to what contribues towards making a high value customer
    • Write R code to summarize the dataset into tables similar to the Location code, Average CLV table below for testing these hypothesis
    • Which parametric or non parametric test will you use to test if Marital status has an impact on value of a customer
    • Plot the variation of CLV for various insurance policy types
    • Plot how many policies are expiring on each day for the month of January 2011
Location.Code Average CLV
Rural $XXXX
Suburban $YYYY
Urban $ZZZZ
##   Customer      State Customer.Lifetime.Value Response Coverage Education
## 1  BU79786 Washington                2763.519       No    Basic  Bachelor
## 2  QZ44356    Arizona                6979.536       No Extended  Bachelor
## 3  AI49188     Nevada               12887.432       No  Premium  Bachelor
## 4  WW63253 California                7645.862       No    Basic  Bachelor
## 5  HB64268 Washington                2813.693       No    Basic  Bachelor
## 6  OC83172     Oregon                8256.298      Yes    Basic  Bachelor
##   Effective.To.Date EmploymentStatus Gender Income Location.Code
## 1           2/24/11         Employed      F  56274      Suburban
## 2           1/31/11       Unemployed      F      0      Suburban
## 3           2/19/11         Employed      F  48767      Suburban
## 4           1/20/11       Unemployed      M      0      Suburban
## 5            2/3/11         Employed      M  43836         Rural
## 6           1/25/11         Employed      F  62902         Rural
##   Marital.Status Monthly.Premium.Auto Months.Since.Last.Claim
## 1        Married                   69                      32
## 2         Single                   94                      13
## 3        Married                  108                      18
## 4        Married                  106                      18
## 5         Single                   73                      12
## 6        Married                   69                      14
##   Months.Since.Policy.Inception Number.of.Open.Complaints
## 1                             5                         0
## 2                            42                         0
## 3                            38                         0
## 4                            65                         0
## 5                            44                         0
## 6                            94                         0
##   Number.of.Policies    Policy.Type       Policy Renew.Offer.Type
## 1                  1 Corporate Auto Corporate L3           Offer1
## 2                  8  Personal Auto  Personal L3           Offer3
## 3                  2  Personal Auto  Personal L3           Offer1
## 4                  7 Corporate Auto Corporate L2           Offer1
## 5                  1  Personal Auto  Personal L1           Offer1
## 6                  2  Personal Auto  Personal L3           Offer2
##   Sales.Channel Total.Claim.Amount Vehicle.Class Vehicle.Size
## 1         Agent           384.8111  Two-Door Car      Medsize
## 2         Agent          1131.4649 Four-Door Car      Medsize
## 3         Agent           566.4722  Two-Door Car      Medsize
## 4   Call Center           529.8813           SUV      Medsize
## 5         Agent           138.1309 Four-Door Car      Medsize
## 6           Web           159.3830  Two-Door Car      Medsize
## 'data.frame':    9134 obs. of  24 variables:
##  $ Customer                     : chr  "BU79786" "QZ44356" "AI49188" "WW63253" ...
##  $ State                        : chr  "Washington" "Arizona" "Nevada" "California" ...
##  $ Customer.Lifetime.Value      : num  2764 6980 12887 7646 2814 ...
##  $ Response                     : chr  "No" "No" "No" "No" ...
##  $ Coverage                     : chr  "Basic" "Extended" "Premium" "Basic" ...
##  $ Education                    : chr  "Bachelor" "Bachelor" "Bachelor" "Bachelor" ...
##  $ Effective.To.Date            : chr  "2/24/11" "1/31/11" "2/19/11" "1/20/11" ...
##  $ EmploymentStatus             : chr  "Employed" "Unemployed" "Employed" "Unemployed" ...
##  $ Gender                       : chr  "F" "F" "F" "M" ...
##  $ Income                       : int  56274 0 48767 0 43836 62902 55350 0 14072 28812 ...
##  $ Location.Code                : chr  "Suburban" "Suburban" "Suburban" "Suburban" ...
##  $ Marital.Status               : chr  "Married" "Single" "Married" "Married" ...
##  $ Monthly.Premium.Auto         : int  69 94 108 106 73 69 67 101 71 93 ...
##  $ Months.Since.Last.Claim      : int  32 13 18 18 12 14 0 0 13 17 ...
##  $ Months.Since.Policy.Inception: int  5 42 38 65 44 94 13 68 3 7 ...
##  $ Number.of.Open.Complaints    : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Number.of.Policies           : int  1 8 2 7 1 2 9 4 2 8 ...
##  $ Policy.Type                  : chr  "Corporate Auto" "Personal Auto" "Personal Auto" "Corporate Auto" ...
##  $ Policy                       : chr  "Corporate L3" "Personal L3" "Personal L3" "Corporate L2" ...
##  $ Renew.Offer.Type             : chr  "Offer1" "Offer3" "Offer1" "Offer1" ...
##  $ Sales.Channel                : chr  "Agent" "Agent" "Agent" "Call Center" ...
##  $ Total.Claim.Amount           : num  385 1131 566 530 138 ...
##  $ Vehicle.Class                : chr  "Two-Door Car" "Four-Door Car" "Two-Door Car" "SUV" ...
##  $ Vehicle.Size                 : chr  "Medsize" "Medsize" "Medsize" "Medsize" ...