Some useful information

This is a summary of a set of 1 experiments using a LONI pipeline workflow file that performs 3000 independent jobs, each one with the CBDA-SL and the knockoff filter feature mining strategies. Each experiments has a total of 9000 jobs and is uniquely identified by 6 input arguments: # of jobs [M], % of missing values [misValperc], min [Kcol_min] and max [Kcol_max] % for FSR-Feature Sampling Range, min [Nrow_min] and max [Nrow_max] % for SSR-Subject Sampling Range.

This document has the final results, by experiment. See https://drive.google.com/file/d/0B5sz_T_1CNJQWmlsRTZEcjBEOEk/view?ths=true for some general documentation of the CBDA-SL project and github https://github.com/SOCR/CBDA for some of the code.

Features selected by both the knockoff filter and the CBDA-SL algorithms are shown as spikes in the histograms shown below. I list the top features selected, set to 15 here.

## [1] EXPERIMENT 1
##          M misValperc   Kcol_min   Kcol_max   Nrow_min   Nrow_max 
##       9000          0          1          5         30         60 
##      M misValperc Kcol_min Kcol_max Nrow_min Nrow_max
## 1 9000          0        1        5       30       60

## [1] "TABLE with CBDA-SL & KNOCKOFF FILTER RESULTS"
## [1] "EXPERIMENT" "1"         
##  Accuracy Count Density   MSE  Count Density    Knockoff Count Density  
##  947      63    0.1294591 856  54    0.11355273  924     38    2.8400598
##  982      60    0.1232944 434  52    0.10934707 1174     28    2.0926756
##  492      57    0.1171297 1134 51    0.10724424  277     24    1.7937220
##  507      56    0.1150748 135  49    0.10303859  783     23    1.7189836
##  658      55    0.1130199 496  49    0.10303859  990     20    1.4947683
##  270      54    0.1109650 675  49    0.10303859  233     16    1.1958146
##  277      54    0.1109650 937  49    0.10303859  313     16    1.1958146
##  313      54    0.1109650 1082 49    0.10303859 1233     14    1.0463378
##  1039     54    0.1109650 1088 49    0.10303859 1248     14    1.0463378
##  182      53    0.1089101 1290 49    0.10303859 1486     14    1.0463378
##  38       52    0.1068552 454  48    0.10093576  207     13    0.9715994
##  615      51    0.1048003 1177 48    0.10093576  271     13    0.9715994
##  1396     51    0.1048003 1201 48    0.10093576  994     12    0.8968610
##  1044     50    0.1027454 1461 48    0.10093576 1142     12    0.8968610
##  1213     50    0.1027454 862  47    0.09883293 1351     12    0.8968610
## 
## 
## 
## 
## 
## 
## [1] EXPERIMENT 2
##          M misValperc   Kcol_min   Kcol_max   Nrow_min   Nrow_max 
##       9000          0          5         15         30         60 
##      M misValperc Kcol_min Kcol_max Nrow_min Nrow_max
## 2 9000          0        5       15       30       60

## [1] "TABLE with CBDA-SL & KNOCKOFF FILTER RESULTS"
## [1] "EXPERIMENT" "2"         
##  Accuracy Count Density    MSE  Count Density    Knockoff Count Density 
##  277      154   0.10319917 335  140   0.08930736  924     21    3.047896
##  1277     140   0.09381743 1145 136   0.08675572  277     20    2.902758
##  510      136   0.09113693 1245 135   0.08611781 1174     19    2.757620
##  331      132   0.08845644 397  134   0.08547990 1142     13    1.886792
##  831      132   0.08845644 1176 134   0.08547990  990     12    1.741655
##  501      130   0.08711619 178  133   0.08484199  271     11    1.596517
##  405      129   0.08644606 284  132   0.08420408  994     10    1.451379
##  956      128   0.08577594 732  131   0.08356617  207      9    1.306241
##  1118     128   0.08577594 773  131   0.08356617  313      8    1.161103
##  1471     128   0.08577594 1328 131   0.08356617  584      8    1.161103
##  212      127   0.08510581 466  130   0.08292826  783      8    1.161103
##  328      127   0.08510581 659  130   0.08292826 1233      8    1.161103
##  827      127   0.08510581 718  129   0.08229035 1239      8    1.161103
##  1132     127   0.08510581 1430 129   0.08229035   38      7    1.015965
##  1372     127   0.08510581 302  128   0.08165244  233      7    1.015965
## 
## 
## 
## 
## 
## 
## [1] EXPERIMENT 5
##          M misValperc   Kcol_min   Kcol_max   Nrow_min   Nrow_max 
##       9000          0          5         15         60         80 
##      M misValperc Kcol_min Kcol_max Nrow_min Nrow_max
## 5 9000          0        5       15       60       80

## [1] "TABLE with CBDA-SL & KNOCKOFF FILTER RESULTS"
## [1] "EXPERIMENT" "5"         
##  Accuracy Count Density    MSE  Count Density    Knockoff Count Density 
##  38       148   0.10016107 224  139   0.09152625  924     92    6.301370
##  1471     142   0.09610049 735  135   0.08889240 1174     77    5.273973
##  277      141   0.09542372 1115 135   0.08889240  783     60    4.109589
##  1326     137   0.09271667 490  132   0.08691701  277     56    3.835616
##  658      133   0.09000961 227  131   0.08625855  990     46    3.150685
##  1127     132   0.08933285 1158 131   0.08625855 1233     44    3.013699
##  1248     132   0.08933285 1185 130   0.08560009  510     38    2.602740
##  990      131   0.08865608 5    129   0.08494163  207     32    2.191781
##  81       129   0.08730255 16   129   0.08494163  584     31    2.123288
##  233      129   0.08730255 44   129   0.08494163  271     30    2.054795
##  1314     129   0.08730255 260  129   0.08494163   71     29    1.986301
##  1459     129   0.08730255 660  129   0.08494163  868     27    1.849315
##  572      128   0.08662579 447  128   0.08428317 1486     27    1.849315
##  688      128   0.08662579 477  128   0.08428317 1351     24    1.643836
##  1485     128   0.08662579 209  127   0.08362470 1326     23    1.575342
## 
## 
## 
## 
## 
## 
## [1] EXPERIMENT 7
##          M misValperc   Kcol_min   Kcol_max   Nrow_min   Nrow_max 
##       9000         20          1          5         30         60 
##      M misValperc Kcol_min Kcol_max Nrow_min Nrow_max
## 7 9000         20        1        5       30       60

## [1] "TABLE with CBDA-SL & KNOCKOFF FILTER RESULTS"
## [1] "EXPERIMENT" "7"         
##  Accuracy Count Density   MSE  Count Density    Knockoff Count Density  
##  38       68    0.1430675 6    54    0.11472032  924     40    3.1620553
##  1039     60    0.1262361 676  52    0.11047142  277     24    1.8972332
##  277      57    0.1199243 1134 52    0.11047142  990     23    1.8181818
##  1280     54    0.1136125 284  51    0.10834697  207     18    1.4229249
##  313      52    0.1094046 396  51    0.10834697 1233     18    1.4229249
##  1248     52    0.1094046 503  50    0.10622251 1174     16    1.2648221
##  250      51    0.1073007 1075 50    0.10622251  783     15    1.1857708
##  261      51    0.1073007 327  48    0.10197361  868     14    1.1067194
##  983      51    0.1073007 789  48    0.10197361   38     13    1.0276680
##  990      51    0.1073007 1007 48    0.10197361  694     12    0.9486166
##  1277     51    0.1073007 546  47    0.09984916 1326     12    0.9486166
##  342      50    0.1051967 725  47    0.09984916 1351     12    0.9486166
##  483      50    0.1051967 29   46    0.09772471 1453     12    0.9486166
##  730      50    0.1051967 83   46    0.09772471  584     11    0.8695652
##  815      50    0.1051967 380  46    0.09772471  792     11    0.8695652
## 
## 
## 
## 
## 
## 
## [1] EXPERIMENT 11
##          M misValperc   Kcol_min   Kcol_max   Nrow_min   Nrow_max 
##       9000         20          5         15         60         80 
##       M misValperc Kcol_min Kcol_max Nrow_min Nrow_max
## 11 9000         20        5       15       60       80

## [1] "TABLE with CBDA-SL & KNOCKOFF FILTER RESULTS"
## [1] "EXPERIMENT" "11"        
##  Accuracy Count Density    MSE  Count Density    Knockoff Count Density 
##  277      146   0.10028437 665  130   0.08805918  924     94    6.184211
##  1248     145   0.09959749 228  129   0.08738180 1174     77    5.065789
##  1295     142   0.09753685 1290 129   0.08738180  783     54    3.552632
##  119      140   0.09616309 1227 127   0.08602704  277     52    3.421053
##  38       137   0.09410245 214  126   0.08534966  990     49    3.223684
##  218      135   0.09272870 687  126   0.08534966 1142     43    2.828947
##  1255     133   0.09135494 1490 126   0.08534966  207     39    2.565789
##  1214     132   0.09066806 37   125   0.08467228  584     37    2.434211
##  313      130   0.08929430 118  125   0.08467228  510     31    2.039474
##  510      130   0.08929430 161  125   0.08467228  868     31    2.039474
##  578      129   0.08860742 514  125   0.08467228 1233     31    2.039474
##  1474     129   0.08860742 1107 125   0.08467228 1248     28    1.842105
##  407      128   0.08792054 1190 125   0.08467228  313     27    1.776316
##  526      128   0.08792054 85   124   0.08399491   38     26    1.710526
##  658      128   0.08792054 210  124   0.08399491  878     26    1.710526