Sarah Shikangah
June 21, 2017
The goal of this project is to create a web page presentation of the prediction of the wholesale imports since 2010 to 2016. Data was obtained from the site https://datahub.io/dataset/predicting-wholesale-imports-by-region-of-onion/resource/5e6a58bf-110f-497a-b9da-0f69c707e965. R Mardown will be used in conjunction with Plotly.
library(plotly)
library(ggplot2)Download dataset from datahub website as shown below;
adf <- read.csv("https://datahub.io/dataset/dfa62f19-ce70-42a4-9667-6a62603da9a8/resource/5e6a58bf-110f-497a-b9da-0f69c707e965/download/302extract1.csv")
# get random sampling n=30
samp <- adf[sample(nrow(adf), 30),]
#Drop unwanted variables and format date
samp <- samp[, -c(3:5)]
samp$DATA.trade_ymd <- as.Date(samp$DATA.trade_ymd)
head(samp)## rowkey DATA.trade_ymd DATA.trade_volume DATA.ym
## 32900 NA 2010-05-17 8246 2010 05
## 1043 NA 2010-10-16 12750 2010 10
## 243970 NA 2015-04-25 32000 2015 04
## 225926 NA 2015-01-16 40 2015 01
## 233 NA 2010-11-20 1744 2010 11
## 287026 NA 2016-08-27 5420 2016 08
plot_ly(x = ~samp$DATA.trade_ymd, y =~ samp$DATA.trade_volume)