Cargo el data ser luego de haber eliminados columnas en plantilla y reformatear el dataset

Existen diferencias en la general (todos los años), para sexo y COPD en niños de 6 años.

chisq.test(df$sexogeneral,df$copdgeneral)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexogeneral and df$copdgeneral
X-squared = 10.219, df = 3, p-value = 0.01679

Ahora lo hago por año. Diferencia entre sexo y año 2016 para COPD

chisq.test(df$sexo16,df$copd16)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo16 and df$copd16
X-squared = 4.8769, df = 2, p-value = 0.0873

Diferencia entre sexo y año 2015 para COPD

chisq.test(df$sexo15,df$copd15)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo15 and df$copd15
X-squared = 4.9212, df = 3, p-value = 0.1777

Diferencia entre sexo y año 2014 para COPD

chisq.test(df$sexo14,df$copd14)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo14 and df$copd14
X-squared = 4.5634, df = 2, p-value = 0.1021

Diferencia entre sexo y año 2013 para COPD

chisq.test(df$sexo13,df$copd13)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test with Yates' continuity correction

data:  df$sexo13 and df$copd13
X-squared = 0.75704, df = 1, p-value = 0.3843

Diferencia entre sexo y año 2012 para COPD

chisq.test(df$sexo12,df$copd12)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo12 and df$copd12
X-squared = 3.3398, df = 3, p-value = 0.3421

Diferencia entre sexo y año 2011 para COPD

chisq.test(df$sexo11,df$copd11)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test with Yates' continuity correction

data:  df$sexo11 and df$copd11
X-squared = 0.0087302, df = 1, p-value = 0.9256

Ahora lo mismo para ceod

chisq.test(df$sexogeneral,df$ceodgeneral)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexogeneral and df$ceodgeneral
X-squared = 21.447, df = 15, p-value = 0.1231
chisq.test(df$sexo16,df$ceod16)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo16 and df$ceod16
X-squared = 12.523, df = 13, p-value = 0.4853
chisq.test(df$sexo15,df$ceod15)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo15 and df$ceod15
X-squared = 12.498, df = 13, p-value = 0.4873
chisq.test(df$sexo14,df$ceod14)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo14 and df$ceod14
X-squared = 16.119, df = 15, p-value = 0.3742
chisq.test(df$sexo13,df$ceod13)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo13 and df$ceod13
X-squared = 12.628, df = 14, p-value = 0.556
chisq.test(df$sexo12,df$ceod12)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo12 and df$ceod12
X-squared = 5.959, df = 10, p-value = 0.8187
chisq.test(df$sexo11,df$ceod11)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo11 and df$ceod11
X-squared = 8.9833, df = 7, p-value = 0.2539
Desviaciones estandar 
Hice cálculos en plantilla excel
general para COPD: 0,3692537238
general para ceod: 3,696655661
2016 COPD: 0,2585857048 
2016 ceod: 3,622021601
2015 COPD: 0,4259622031 
2015 ceod:3,762575812
2014 COPD: 0,3110222818 
2014 ceod: 3,914762115
2013 COPD: 0,342893216  
2013 ceod: 3,962896094
2012 COPD: 0,4930418269 
2012 ceod: 3,148796344
2011 COPD:0,4264014327  
2011 ceod:2,531618239

Analisis chi-2 para COPD 12 años.

chisq.test(df$sexogeneral,df$copdgeneral)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexogeneral and df$copdgeneral
X-squared = 12.644, df = 20, p-value = 0.8921
chisq.test(df$sexo16,df$copd16)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo16 and df$copd16
X-squared = 9.2663, df = 12, p-value = 0.68
chisq.test(df$sexo15,df$copd15)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo15 and df$copd15
X-squared = 9.3687, df = 12, p-value = 0.6712
chisq.test(df$sexo14,df$copd14)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo14 and df$copd14
X-squared = 10.147, df = 14, p-value = 0.7513
chisq.test(df$sexo13,df$copd13)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo13 and df$copd13
X-squared = 16.708, df = 10, p-value = 0.08109
chisq.test(df$sexo12,df$copd12)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo12 and df$copd12
X-squared = 6.9156, df = 7, p-value = 0.4377
chisq.test(df$sexo11,df$copd11)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo11 and df$copd11
X-squared = 8.4763, df = 9, p-value = 0.4869

Ahora ceod para general y por años.

chisq.test(df$sexogeneral,df$ceodgeneral)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexogeneral and df$ceodgeneral
X-squared = 70.231, df = 12, p-value = 2.9e-10
chisq.test(df$sexo16,df$ceod16)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo16 and df$ceod16
X-squared = 43.244, df = 10, p-value = 4.498e-06
chisq.test(df$sexo15,df$ceod15)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo15 and df$ceod15
X-squared = 2.3668, df = 4, p-value = 0.6686
chisq.test(df$sexo14,df$ceod14)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo14 and df$ceod14
X-squared = 38.521, df = 8, p-value = 6.031e-06
chisq.test(df$sexo13,df$ceod13)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo13 and df$ceod13
X-squared = 109.02, df = 10, p-value < 2.2e-16
chisq.test(df$sexo12,df$ceod12)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo12 and df$ceod12
X-squared = 4.1637, df = 2, p-value = 0.1247
chisq.test(df$sexo11,df$ceod11)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$sexo11 and df$ceod11
X-squared = 3.2947, df = 3, p-value = 0.3484
Desviaciones estandar 
Hice cálculos en plantilla excel para 12 años

Promedio general COPD: 1.445328032  SD: 1.80870324
Promedio general cedo: 0.1868787276 SD: 0.7312509061
Promedio COPD 2016: 1.106870229 SD:1.575055107
Promedio ceod 2016: 0.2366412214 SD: 0.7629100266
Promedio COPD 2015: 1.222 SD:1.513956238
Promedio ceod 2015: 0.1944444444 SD: 0.8886408384
Promedio COPD 2014: 1.260273973 SD: 1.691706874
Promedio ceod 2014: 0.2054794521 SD:0.8326481201
Promeido COPD 2013: 1.39047619 SD: 1.490322875
Promedio ceod 2013: 0.2 SD:0.8814324007
Promedio COPD 2012: 1.816901408 SD:2.263435184
Promedio ceod 2012: 0.1971830986 SD:0.5242605217
Promedio COPD 2011: 1.965517241 SD:2.131972969
Promedio ceod 2011: 0.06896551724 SD:0.3974659104
LS0tCnRpdGxlOiAiSW52ZXN0aWdhY2nDs24gbG9jYWwgRWNoZXZlcnJpYSwgUiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQpDYXJnbyBlbCBkYXRhIHNlciBsdWVnbyBkZSBoYWJlciBlbGltaW5hZG9zIGNvbHVtbmFzIGVuIHBsYW50aWxsYSB5IHJlZm9ybWF0ZWFyIGVsIGRhdGFzZXQgCmBgYHtyfQpkZiA8LSByZWFkLmNzdigiaW52c3RfbG9jYWxfY2hhcm8uY3N2IiwgaGVhZGVyID0gVFJVRSwgc2VwPSIsIikKc3RyKGRmKQpzdW1tYXJ5KGRmKQoKYGBgCkV4aXN0ZW4gZGlmZXJlbmNpYXMgZW4gbGEgZ2VuZXJhbCAodG9kb3MgbG9zIGHDsW9zKSwgcGFyYSBzZXhvIHkgQ09QRCBlbiBuacOxb3MgZGUgNiBhw7Fvcy4gCmBgYHtyfQpjaGlzcS50ZXN0KGRmJHNleG9nZW5lcmFsLGRmJGNvcGRnZW5lcmFsKQpgYGAKQWhvcmEgbG8gaGFnbyBwb3IgYcOxby4gCkRpZmVyZW5jaWEgZW50cmUgc2V4byB5IGHDsW8gMjAxNiBwYXJhIENPUEQKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzE2LGRmJGNvcGQxNikKYGBgCkRpZmVyZW5jaWEgZW50cmUgc2V4byB5IGHDsW8gMjAxNSBwYXJhIENPUEQKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzE1LGRmJGNvcGQxNSkKYGBgCkRpZmVyZW5jaWEgZW50cmUgc2V4byB5IGHDsW8gMjAxNCBwYXJhIENPUEQKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzE0LGRmJGNvcGQxNCkKYGBgCkRpZmVyZW5jaWEgZW50cmUgc2V4byB5IGHDsW8gMjAxMyBwYXJhIENPUEQKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzEzLGRmJGNvcGQxMykKYGBgCkRpZmVyZW5jaWEgZW50cmUgc2V4byB5IGHDsW8gMjAxMiBwYXJhIENPUEQKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzEyLGRmJGNvcGQxMikKYGBgCkRpZmVyZW5jaWEgZW50cmUgc2V4byB5IGHDsW8gMjAxMSBwYXJhIENPUEQKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzExLGRmJGNvcGQxMSkKYGBgCkFob3JhIGxvIG1pc21vIHBhcmEgY2VvZApgYGB7cn0KY2hpc3EudGVzdChkZiRzZXhvZ2VuZXJhbCxkZiRjZW9kZ2VuZXJhbCkKYGBgCmBgYHtyfQpjaGlzcS50ZXN0KGRmJHNleG8xNixkZiRjZW9kMTYpCmBgYApgYGB7cn0KY2hpc3EudGVzdChkZiRzZXhvMTUsZGYkY2VvZDE1KQpgYGAKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzE0LGRmJGNlb2QxNCkKYGBgCmBgYHtyfQpjaGlzcS50ZXN0KGRmJHNleG8xMyxkZiRjZW9kMTMpCmBgYApgYGB7cn0KY2hpc3EudGVzdChkZiRzZXhvMTIsZGYkY2VvZDEyKQpgYGAKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzExLGRmJGNlb2QxMSkKYGBgCgpgYGB7cn0KRGVzdmlhY2lvbmVzIGVzdGFuZGFyIApIaWNlIGPDoWxjdWxvcyBlbiBwbGFudGlsbGEgZXhjZWwKZ2VuZXJhbCBwYXJhIENPUEQ6IDAsMzY5MjUzNzIzOApnZW5lcmFsIHBhcmEgY2VvZDogMyw2OTY2NTU2NjEKMjAxNiBDT1BEOiAwLDI1ODU4NTcwNDgJCjIwMTYgY2VvZDogMyw2MjIwMjE2MDEKMjAxNSBDT1BEOiAwLDQyNTk2MjIwMzEJCjIwMTUgY2VvZDozLDc2MjU3NTgxMgoyMDE0IENPUEQ6IDAsMzExMDIyMjgxOAkKMjAxNCBjZW9kOiAzLDkxNDc2MjExNQoyMDEzIENPUEQ6IDAsMzQyODkzMjE2CQoyMDEzIGNlb2Q6IDMsOTYyODk2MDk0CjIwMTIgQ09QRDogMCw0OTMwNDE4MjY5CQoyMDEyIGNlb2Q6IDMsMTQ4Nzk2MzQ0CjIwMTEgQ09QRDowLDQyNjQwMTQzMjcJCjIwMTEgY2VvZDoyLDUzMTYxODIzOQpgYGAKCmBgYHtyIEFob3JhIHBhcmEgMTIgYcOxb3MufQpkZiA8LSByZWFkLmNzdigiYW5hbGlzaXNwYXJhMTJhbm9zX2NoYXJvLmNzdiIsIGhlYWRlciA9IFRSVUUsIHNlcD0iLCIpCnN0cihkZikKc3VtbWFyeShkZikKYGBgCkFuYWxpc2lzIGNoaS0yIHBhcmEgQ09QRCAxMiBhw7Fvcy4gCmBgYHtyfQpjaGlzcS50ZXN0KGRmJHNleG9nZW5lcmFsLGRmJGNvcGRnZW5lcmFsKQpgYGAKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzE2LGRmJGNvcGQxNikKYGBgCmBgYHtyfQpjaGlzcS50ZXN0KGRmJHNleG8xNSxkZiRjb3BkMTUpCmBgYApgYGB7cn0KY2hpc3EudGVzdChkZiRzZXhvMTQsZGYkY29wZDE0KQpgYGAKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzEzLGRmJGNvcGQxMykKYGBgCmBgYHtyfQpjaGlzcS50ZXN0KGRmJHNleG8xMixkZiRjb3BkMTIpCmBgYApgYGB7cn0KY2hpc3EudGVzdChkZiRzZXhvMTEsZGYkY29wZDExKQpgYGAKQWhvcmEgY2VvZCBwYXJhIGdlbmVyYWwgeSBwb3IgYcOxb3MuIApgYGB7cn0KY2hpc3EudGVzdChkZiRzZXhvZ2VuZXJhbCxkZiRjZW9kZ2VuZXJhbCkKYGBgCmBgYHtyfQpjaGlzcS50ZXN0KGRmJHNleG8xNixkZiRjZW9kMTYpCmBgYApgYGB7cn0KY2hpc3EudGVzdChkZiRzZXhvMTUsZGYkY2VvZDE1KQpgYGAKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzE0LGRmJGNlb2QxNCkKYGBgCmBgYHtyfQpjaGlzcS50ZXN0KGRmJHNleG8xMyxkZiRjZW9kMTMpCmBgYApgYGB7cn0KY2hpc3EudGVzdChkZiRzZXhvMTIsZGYkY2VvZDEyKQpgYGAKYGBge3J9CmNoaXNxLnRlc3QoZGYkc2V4bzExLGRmJGNlb2QxMSkKYGBgCmBgYHtyfQpEZXN2aWFjaW9uZXMgZXN0YW5kYXIgCkhpY2UgY8OhbGN1bG9zIGVuIHBsYW50aWxsYSBleGNlbCBwYXJhIDEyIGHDsW9zCgpQcm9tZWRpbyBnZW5lcmFsIENPUEQ6IDEuNDQ1MzI4MDMyCVNEOiAxLjgwODcwMzI0ClByb21lZGlvIGdlbmVyYWwgY2VkbzogMC4xODY4Nzg3Mjc2IFNEOiAwLjczMTI1MDkwNjEKUHJvbWVkaW8gQ09QRCAyMDE2OiAxLjEwNjg3MDIyOSBTRDoxLjU3NTA1NTEwNwpQcm9tZWRpbyBjZW9kIDIwMTY6CTAuMjM2NjQxMjIxNCBTRDogMC43NjI5MTAwMjY2ClByb21lZGlvIENPUEQgMjAxNTogMS4yMjIgU0Q6MS41MTM5NTYyMzgKUHJvbWVkaW8gY2VvZCAyMDE1OiAwLjE5NDQ0NDQ0NDQgU0Q6IDAuODg4NjQwODM4NApQcm9tZWRpbyBDT1BEIDIwMTQ6IDEuMjYwMjczOTczIFNEOiAxLjY5MTcwNjg3NApQcm9tZWRpbyBjZW9kIDIwMTQ6IDAuMjA1NDc5NDUyMSBTRDowLjgzMjY0ODEyMDEKUHJvbWVpZG8gQ09QRCAyMDEzOiAxLjM5MDQ3NjE5IFNEOiAxLjQ5MDMyMjg3NQpQcm9tZWRpbyBjZW9kIDIwMTM6IDAuMiBTRDowLjg4MTQzMjQwMDcKUHJvbWVkaW8gQ09QRCAyMDEyOiAxLjgxNjkwMTQwOCBTRDoyLjI2MzQzNTE4NApQcm9tZWRpbyBjZW9kIDIwMTI6IDAuMTk3MTgzMDk4NiBTRDowLjUyNDI2MDUyMTcKUHJvbWVkaW8gQ09QRCAyMDExOiAxLjk2NTUxNzI0MSBTRDoyLjEzMTk3Mjk2OQpQcm9tZWRpbyBjZW9kIDIwMTE6IDAuMDY4OTY1NTE3MjQgU0Q6MC4zOTc0NjU5MTA0CmBgYAoK