Conceptos clave

Si tenemos tres podemos calcular un cuarto

Paquete a utilizar

Cálculos

Función Para Ejemplo Claves
pwr.2p.test two proportions (equal n) pwr.t2n.test(n1 = , n2= , d = , sig.level =, power = ) n1 y n2 son los tamaños muestrales
pwr.2p2n.test two proportions (unequal n) pwr.2p2n.test(h = , n1 = , n2 = , sig.level = , power = )
pwr.anova.test balanced one way ANOVA pwr.anova.test(k = , n = , f = , sig.level = , power = )
pwr.chisq.test chi-square test pwr.chisq.test(w =, N = , df = , sig.level =, power = )
pwr.f2.test general linear model pwr.f2.test(u =, v = , f2 = , sig.level = , power = )
pwr.p.test proportion (one sample) pwr.p.test(h = , n = , sig.level = power = )
pwr.r.test correlation pwr.r.test(n = , r = , sig.level = , power = )
pwr.t.test t-tests (one sample, 2 sample, paired)
pwr.t2n.test t-test (two samples with unequal n) pwr.2p.test(h = , n = , sig.level =, power = )

Ejemplos

Para un test t de dos colas, con un nivel de p = 0.05 y n= 30 por grupo, que tamaño de efecto se puede detectar con un poder 0.8?

pwr.2p.test(n = 30, sig.level = 0.01, power = 0.8)

     Difference of proportion power calculation for binomial distribution (arcsine transformation) 

              h = 0.8823847
              n = 30
      sig.level = 0.01
          power = 0.8
    alternative = two.sided

NOTE: same sample sizes

¿Qué n necesito para detectar un tamaño de efecto 0.3 en un test de anova?

pwr.anova.test(k = 4, n = NULL, f = 0.3, sig.level = 0.05, power = 0.8)

     Balanced one-way analysis of variance power calculation 

              k = 4
              n = 31.27917
              f = 0.3
      sig.level = 0.05
          power = 0.8

NOTE: n is number in each group
LS0tCnRpdGxlOiAiQ8OhbGN1bG8gZGUgdGFtYcOxbyBtdWVzdHJhbCIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyBDb25jZXB0b3MgY2xhdmUKIC0gKipUYW1hw7FvIG11ZXN0cmFsKioKIC0gKipUYW1hw7FvIGRlbCBlZmVjdG8qKiA9IGRpZmVyZW5jaWEgKGVzdGFuZGFyaXphZGEpIGVudHJlIGdydXBvcy4gTGEgZCBkZSBDb2hlbiByZXByZXNlbnRhIGxhcyBkZXN2aWFjaW9uZXMgZXN0w6FuZGFyIHF1ZSBzZXBhcmFuIGRvcyBvIG3DoXMgZ3J1cG9zLCBlajogZCBkZSBDb2hlbiA9IDAuNSByZXByZXNlbnRhIHF1ZSBsYSBkaWZlcmVuY2lhIGVudHJlIGdydXBvIGV4cGVyaW1lbnRhbCB5IG11ZXN0cmFsIGVzIGRlIG1lZGlhIGRlc3ZpYWNpw7NuIGVzdMOhbmRhci4gQ29oZW4gc3VnaXJpw7MgKHByb3Zpc29yaWFtZW50ZSkgcXVlIDAuMiBwZXF1ZcOxbywgMC41IG1lZGlhbm8geSAwLjggZ3JhbmRlLiBTZSBwdWVkZSBjYWxjdWxhciBhcXXDrTogaHR0cDovL3d3dy51Y2NzLmVkdS9+bGJlY2tlci8gCiAtICoqTml2ZWwgZGUgc2lnbmlmaWNhbmNpYSoqID0gcHJvYmFiaWxpZGFkIGRlIGVuY29udHJhciB1bmEgZGlmZXJlbmNpYS9lZmVjdG8gcXVlIG5vIGVzIHJlYWwgKEVycm9yIHRpcG8gSSkKIC0gKipQb2RlciAxIC0gRXJyb3IgVGlwbyBJSSoqIDogcHJvYmFiaWxpZGFkIGRlIGVuY29udHJhciB1bmEgZGlmZXJlbmNpYS9lZmVjdG8gcXVlIGVzIHJlYWwKClNpIHRlbmVtb3MgdHJlcyBwb2RlbW9zIGNhbGN1bGFyIHVuIGN1YXJ0bwoKIyBQYXF1ZXRlIGEgdXRpbGl6YXIKYGBge3IgUGFxdWV0ZX0KbGlicmFyeSgicHdyIikKYGBgCgojIEPDoWxjdWxvcwp8IEZ1bmNpw7NuICAgICAgICB8IFBhcmEgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwgRWplbXBsbyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwgQ2xhdmVzICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8CnwtLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tfAp8IHB3ci4ycC50ZXN0ICAgIHwgdHdvIHByb3BvcnRpb25zIChlcXVhbCBuKSAgICAgICAgICAgICAgfCBwd3IudDJuLnRlc3QobjEgPSAsIG4yPSAsIGQgPSAsIHNpZy5sZXZlbCA9LCBwb3dlciA9ICkgICAgfCBuMSB5IG4yIHNvbiBsb3MgdGFtYcOxb3MgbXVlc3RyYWxlcyB8CnwgcHdyLjJwMm4udGVzdCAgfCB0d28gcHJvcG9ydGlvbnMgKHVuZXF1YWwgbikgICAgICAgICAgICB8IHB3ci4ycDJuLnRlc3QoaCA9ICwgbjEgPSAsIG4yID0gLCBzaWcubGV2ZWwgPSAsIHBvd2VyID0gKSB8ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfAp8IHB3ci5hbm92YS50ZXN0IHwgYmFsYW5jZWQgb25lIHdheSBBTk9WQSAgICAgICAgICAgICAgICAgfCBwd3IuYW5vdmEudGVzdChrID0gLCBuID0gLCBmID0gLCBzaWcubGV2ZWwgPSAsIHBvd2VyID0gKSAgfCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwKfCBwd3IuY2hpc3EudGVzdCB8IGNoaS1zcXVhcmUgdGVzdCAgICAgICAgICAgICAgICAgICAgICAgIHwgcHdyLmNoaXNxLnRlc3QodyA9LCBOID0gLCBkZiA9ICwgc2lnLmxldmVsID0sIHBvd2VyID0gKSAgIHwgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8CnwgcHdyLmYyLnRlc3QgICAgfCBnZW5lcmFsIGxpbmVhciBtb2RlbCAgICAgICAgICAgICAgICAgICB8IHB3ci5mMi50ZXN0KHUgPSwgdiA9ICwgZjIgPSAsIHNpZy5sZXZlbCA9ICwgcG93ZXIgPSApICAgICB8ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfAp8IHB3ci5wLnRlc3QgICAgIHwgcHJvcG9ydGlvbiAob25lIHNhbXBsZSkgICAgICAgICAgICAgICAgfCBwd3IucC50ZXN0KGggPSAsIG4gPSAsIHNpZy5sZXZlbCA9IHBvd2VyID0gKSAgICAgICAgICAgICAgfCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwKfCBwd3Iuci50ZXN0ICAgICB8IGNvcnJlbGF0aW9uICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwgcHdyLnIudGVzdChuID0gLCByID0gLCBzaWcubGV2ZWwgPSAsIHBvd2VyID0gKSAgICAgICAgICAgIHwgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8CnwgcHdyLnQudGVzdCAgICAgfCB0LXRlc3RzIChvbmUgc2FtcGxlLCAyIHNhbXBsZSwgcGFpcmVkKSB8ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfAp8IHB3ci50Mm4udGVzdCAgIHwgdC10ZXN0ICh0d28gc2FtcGxlcyB3aXRoIHVuZXF1YWwgbikgICAgfCBwd3IuMnAudGVzdChoID0gLCBuID0gLCBzaWcubGV2ZWwgPSwgcG93ZXIgPSApICAgICAgICAgICAgfCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwKCiMgRWplbXBsb3MKClBhcmEgdW4gdGVzdCB0IGRlIGRvcyBjb2xhcywgY29uIHVuIG5pdmVsIGRlIHAgPSAwLjA1IHkgbj0gMzAgcG9yIGdydXBvLCBxdWUgdGFtYcOxbyBkZSBlZmVjdG8gc2UgcHVlZGUgZGV0ZWN0YXIgY29uIHVuIHBvZGVyIDAuOD8KCmBgYHtyIHQgdGVzdH0KcHdyLjJwLnRlc3QobiA9IDMwLCBzaWcubGV2ZWwgPSAwLjAxLCBwb3dlciA9IDAuOCkKCgpgYGAKCgrCv1F1w6kgbiBuZWNlc2l0byBwYXJhIGRldGVjdGFyIHVuIHRhbWHDsW8gZGUgZWZlY3RvIDAuMyBlbiB1biB0ZXN0IGRlIGFub3ZhPwpgYGB7cn0KcHdyLmFub3ZhLnRlc3QoayA9IDQsIG4gPSBOVUxMLCBmID0gMC4zLCBzaWcubGV2ZWwgPSAwLjA1LCBwb3dlciA9IDAuOCkKCmBgYAoK