Weather related hazards cause the lost of many economic resources and human lifes. Hence, it is necessary to execute data based strategies for minimizing the risk associated to these hazards. In the present report we address some general questions regarding what type of weather associated events are more harmful to population and what of them have more economic consquences. With this aim we analyzed the storm data as processed from the data provided in the National Weather Service web page.
path <- "~/Downloads/repdata%2Fdata%2FStormData.csv.bz2"
weather.db <- read.csv(path,header = TRUE)
str(weather.db)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "10/10/1954 0:00:00",..: 6523 6523 4213 11116 1426 1426 1462 2873 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "000","0000","00:00:00 AM",..: 212 257 2645 1563 2524 3126 122 1563 3126 3126 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels "?","ABNORMALLY DRY",..: 830 830 830 830 830 830 830 830 830 830 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels "","E","Eas","EE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","?","(01R)AFB GNRY RNG AL",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","10/10/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels "","?","0000",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","(0E4)PAYSON ARPT",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels "","2","43","9V9",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels ""," "," "," ",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
More frequent weather related hazards
type <- table(weather.db$EVTYPE)
type.sorted <- sort(type,decreasing = TRUE)
top <- 1:20
par(mar=c(9,5,2,2))
barplot(type.sorted[top],
col = "steelblue",
las=2,
cex.names = 0.6,
log="y")
Damage in dolars of weather hazards
dmgByType <- with(weather.db,tapply(PROPDMG,EVTYPE, FUN = sum, na.rm=TRUE))
dmgByType.sorted <- sort(dmgByType,decreasing=TRUE)
par(mar=c(8,4,2,1))
barplot(dmgByType.sorted[top],
las=2,
log = "y",
cex.names = 0.6,
col = "black")
The weather hazards that causes more damage in dolars are tornados.
Fatalites caused by weather hazards
fatByType <- with(weather.db,tapply(FATALITIES,EVTYPE, FUN = sum, na.rm=TRUE))
fatByType.sorted <- sort(fatByType,decreasing=TRUE)
par(mar=c(8.5,4,2,1))
barplot(fatByType.sorted[top],
las=2,
log = "y",
cex.names = 0.6,
col = "black")