The objectives of this problem set is to orient you to a number of activities in R
. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion upload your document to rpubs.com and share the link to the “Problem Set 2” assignmenet on Moodle.
anscombe
data that is part of the library(datasets)
in R
. And assign that data to a new object called data
.data<-anscombe
fBasics()
package!)library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
colStats(anscombe,FUN = mean)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
colStats(anscombe, FUN= var)
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
x1<-data[,1]
x2<-data[,2]
x3<-data[,3]
x4<-data[,4]
y1<-data[,5]
y2<-data[,6]
y3<-data[,7]
y4<-data[,8]
cor(x1,y1)
## [1] 0.8164205
cor(x2,y2)
## [1] 0.8162365
cor(x3,y3)
## [1] 0.8162867
cor(x4,y4)
## [1] 0.8165214
plot(x1,y1, main="Scatterplot for X1 and Y1")
plot(x2,y2, main="Scatterplot for X2 and Y2")
plot(x3,y3, main="Scatterplot for X3 and Y3")
plot(x4,y4, main="Scatterplot for X4 and Y4")
par(mfrow=c(2,2))
plot(x1,y1,pch=16)
plot(x2,y2,pch=16)
plot(x3,y3,pch=16)
plot(x4,y4,pch=16)
lm()
function.fit1 <- lm(y1~x1)
fit2 <- lm(y2~x2)
fit3 <- lm(y3~x3)
fit4 <- lm(y4~x4)
par(mfrow=c(2,2))
plot(x1,y1,pch=16)
abline(fit1)
plot(x2,y2,pch=16)
abline(fit2)
plot(x3,y3,pch=16)
abline(fit3)
plot(x4,y4,pch=16)
abline(fit4)
anova(fit1)
Analysis of Variance Table
Response: y1 Df Sum Sq Mean Sq F value Pr(>F)
x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit2)
Analysis of Variance Table
Response: y2 Df Sum Sq Mean Sq F value Pr(>F)
x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit3)
Analysis of Variance Table
Response: y3 Df Sum Sq Mean Sq F value Pr(>F)
x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit4)
Analysis of Variance Table
Response: y4 Df Sum Sq Mean Sq F value Pr(>F)
x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
The summary statistics have shown similar responses for all four fit models. In particular, fit 1 and fit 2 both demonstrate positive correlation. However, the data visualization has shown that fit is less linear than fit 2.
Also, fit 3 and fit 4 are very vunerable to outliers, as shown in the visualization.