1. ‘dplyr’ package의 함수들을 이용하여 다음과 같이 ‘level1’, ‘level2’ 객체를 만드시오. (10점)


(1) Level 1


level1<-table(hflights_df$Origin)%>% 
        tbl_df()
  
level1<-group_by(hflights_df, Origin) %>%
        summarise(counts=n( )) %>%
        mutate(percent= counts/sum(counts))%>%
        mutate(end=cumsum(counts)*1/227496*pi*2)%>%
        mutate(start=lag(end, n=1, default=0.00000))


(2) Level 2


level2<-select(hflights_df, Origin, UniqueCarrier)%>%
        group_by(Origin,UniqueCarrier)%>%
        summarise(counts=n( ))%>%
        arrange(Origin, desc(counts))

a<-group_by(hflights_df, UniqueCarrier)
b<-summarise(a, count=n(),AveDepDelay=mean(DepDelay, na.rm=TRUE))
c<-select(b,UniqueCarrier, AveDepDelay)
level2<-left_join(level2,c)
## Joining, by = "UniqueCarrier"
level2<-tbl_df(level2)%>%
        mutate(end=cumsum(counts)*1/sum(counts)*pi*2)%>%
        mutate(start=lag(end, n=1, default=0.00000))


2. 1번에서 만든 ‘level1’, ‘level2’ 와 ‘ggforce’ package의 ‘geom_arc_bar’함수를 이용하여 다음과 같이 multi-level donut plot를 만드시오. (5점)


dd <- ggplot()+theme_no_axes()+geom_arc_bar(aes(x0 = 0, y0 = 0, r0 = 0.6, r= 0.6+(level2$AveDepDelay)*0.02, fill = UniqueCarrier, start = start, end = end),data = level2)+ geom_arc_bar(aes(x0 = 0, y0 = 0, r0 = 0.3, r = 0.6, fill = Origin, start = start, end = end), data = level1)+geom_text(aes(x=0.3, y=0.3, label='HOU'),colour='Black', size=4)+geom_text(aes(x=-0.3, y=-0.3, label='IAH'),colour='Black', size=4) 
dd


3. 도착 지연 시간에 영향을 주는 요소들을 알아보자. (25점)


(1) 출발 시간을 3개 그룹으로 나누어 night (0시~8시), day (8시~16시),evening (16시~24시) ‘depGr’ 변수를 생성한다.


vari<-select(hflights_df, Month, DayOfWeek,DepTime,DepDelay)
vari$DepTime<-ifelse(vari$DepTime<800, 'night', ifelse(vari$DepTime<1600 & vari$DepTime>=800,'day','evening'))
vari<-as.data.frame(vari)
hflights_df<-as.data.frame(hflights_df)
colnames(vari)[3]<-"depGr"
hflights_df<-hflights_df %>%
             mutate(depGr=vari$depGr)


(2) ‘Month’를 이용하여 ‘season’ 변수를 생성한다.


vari$Month<-ifelse(vari$Month>=3 & vari$Month <=5, 'Spring', ifelse(vari$Month>=6 & vari$Month<=8,'Summer',ifelse(vari$Month>=9 & vari$Month<=11,'Fall','Winter')))
colnames(vari)[1]<-"season"
hflights_df<-hflights_df %>%
                        mutate(season=vari$season)


(3) ‘DayOfWeek’를 이용하여 ‘weekend’ 변수를 생성한다


vari$DayOfWeek<-ifelse(vari$DayOfWeek==c('6','7'),'weedend','weekday')
colnames(vari)[2]<-"weekend"
hflights_df<-hflights_df %>%
                        mutate(weekend=vari$weekend)


(4) ‘Airports.csv’의 자료를 함께 이용하여, 도착지의 주 ‘state’ 변수를 생성한다. (힌트: 적당한 join 함수를 사용)


Airports<-read.csv('Airports.csv')
colnames(Airports)[1]<-"Dest"
Airports$Dest<-as.character(Airports$Dest)
hflights_df<-left_join(hflights_df,Airports, by='Dest')
## Warning in left_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## character vector and factor, coercing into character vector
state<-hflights_df$state


(5) (1)~(4)에서 생성한 두 변수를 포함하여 도착 지연에 영향을 주는 후보 변수들을 선정하고 탐색적 자료분석을 실시한다.


(5)-a 도착지 공항에 따른 지연시간 평균


CountsOfDest<-table(hflights_df$Dest)
CountsOfDest<-as.data.frame(CountsOfDest)
colnames(CountsOfDest)[1]<-"Dest"
CountsOfDest$Dest<-as.character(CountsOfDest$Dest)
cc<-hflights_df[c(13,15)]
cc<-as.data.frame(cc)
cc$Dest<-as.character(cc$Dest)
mini2<-left_join(CountsOfDest,cc,by="Dest" )
mini3<-group_by(mini2,Dest)%>%
              summarise(mean=mean(DepDelay),na.rm=TRUE)

mini4<-mini3[which(!is.na(mini3$mean)),]
mini4<-as.data.frame(mini4)
mini4
##   Dest      mean na.rm
## 1  AGS 10.000000  TRUE
## 2  ANC 24.952000  TRUE
## 3  BPT  9.333333  TRUE
## 4  GUC  5.755814  TRUE
## 5  PSP  7.528302  TRUE
## 6  RNO  4.403292  TRUE


(5)-b delay 유무에 따른 season별 차이


==> Fall season에 Delay가 확연히 상승함을 알 수 있음.


vari<-select(hflights_df, Month, DayOfWeek,DepTime,DepDelay)
vari$DepTime<-ifelse(vari$DepTime<800, 'night', ifelse(vari$DepTime<1600 & vari$DepTime>=800,'day','evening'))
vari<-as.data.frame(vari)
colnames(vari)[3]<-"depGr"
vari$Month<-ifelse(vari$Month>=3 & vari$Month <=5, 'Spring', ifelse(vari$Month>=6 & vari$Month<=8,'Summer',ifelse(vari$Month>=9 & vari$Month<=11,'Fall','Winter')))
colnames(vari)[1]<-"season"
vari$DayOfWeek<-ifelse(vari$DayOfWeek==c('6','7'),'weedend','weekday')
colnames(vari)[2]<-"weekend"
vari$DepDelay<-ifelse(vari$DepDelay>0,1,0)
vari_delay<-vari%>%filter(vari$DepDelay==1)
vari_ndelay<-vari%>%filter(vari$DepDelay==0)

par(mfrow = c(1,2))
barplot(table(vari_delay$season), col = c("pink","red","skyblue","blue"),
        main="deley_season")
barplot(table(vari_ndelay$season),col = c("pink","red","skyblue","blue"),
        main="nondeley_season")


(5)-c delay 유무에 따른 weekend별 차이


==> delay 유무 상관없이 주ㅈ에 비행기가 많이 운행함을 알 수 있음.


par(mfrow = c(1,2))
barplot(table(vari_delay$weekend),col = c("pink", "skyblue"),
        main="deley_Weekday")
barplot(table(vari_ndelay$weekend),col = c("pink", "skyblue"),
        main="nondelay_Weekday")


(5)-d delay 유무에 따른 출발시간대별 차이


==> evening 시간대에 Delay 많이 됨을 알 수 있음.


par(mfrow = c(1,2))
barplot(table(vari_delay$depGr),col = c("pink", "skyblue","grey"),
        main="deley")
barplot(table(vari_ndelay$depGr),col = c("pink", "skyblue","grey"),
        main="nondeley")


(5)-e DepDelay에 관계된 여러 variable에 관련된 산점도


ElapsedTime<-ggplot(hflights_df,aes(DepTime,ArrDelay))
ElapsedTime1<-ggplot(hflights_df,aes(DayOfWeek,ArrDelay))
ElapsedTime2<-ggplot(hflights_df,aes(state,ArrDelay))
ElapsedTime3<-ggplot(hflights_df,aes(Distance,ArrpDelay))
ElapsedTime4<-ggplot(hflights_df,aes(UniqueCarrier,ArrpDelay))
ElapsedTime1+geom_point(aes(colour=depGr), size=1) +geom_text(aes(label=UniqueCarrier),color='grey35')
## Warning: Removed 3622 rows containing missing values (geom_point).
## Warning: Removed 3622 rows containing missing values (geom_text).

ElapsedTime1+geom_point()+facet_grid(.~depGr)
## Warning: Removed 3622 rows containing missing values (geom_point).

ElapsedTime1+geom_point()+facet_grid(.~weekend)
## Warning: Removed 3622 rows containing missing values (geom_point).

ElapsedTime2+geom_point()+facet_grid(.~depGr)
## Warning: Removed 3622 rows containing missing values (geom_point).


(5)-f DepDelay에 관계된 여러 variable에 관련된 산점도



(6) 다변수 회귀분석을 이용하여 도착 지연 시간에 유의한 영향을 주는 변수들을 알아보고 도착시간 지연을 줄이기 위한 전략을 찾아본다.


- p-value: < 2.2e-16 지만, N수가 많기 때문에 의미 있지는 않다.


- 달 수가 증가할 수록 지연시간이 증가 함을 알 수 있다.(EDA 결과, 봄보다 여름이, 여름보다 겨울에 지연이 자주됨을 볼 수 있다. )


- 실제 경과시간이 증가할 수록 지연시간이 증가함을 알 수 있다.


- SouthWest 항공이 Delay가 유의하게 많음을 알 수 있다.


- 도착지가 JAS(Jasper County Airport-텍사스주)나 TYS(McGhee Tyson Airport-테네시주)인 경우 도착시간이 지연될 가능성이 높다


- 도착지가 JAS나 TYS라면, 도착 예정시간을 기존보다 늦게 설정하는 것이 좋다.


- 봄보다 여름에 가을보다 겨울에 Delay가 많으므로 여름과 겨울에는 도착 예정시간을 기존보다 늦게 설정해두는 것이 좋다.


f1<-lm(ArrDelay~DayofMonth+DepTime+ActualElapsedTime+UniqueCarrier+Dest,data=hflights_df)                   
f1
## 
## Call:
## lm(formula = ArrDelay ~ DayofMonth + DepTime + ActualElapsedTime + 
##     UniqueCarrier + Dest, data = hflights_df)
## 
## Coefficients:
##       (Intercept)         DayofMonth            DepTime  
##        -129.40736            0.06940            0.01439  
## ActualElapsedTime    UniqueCarrierAS    UniqueCarrierB6  
##           0.86753          -16.46878          -56.01842  
##   UniqueCarrierCO    UniqueCarrierDL    UniqueCarrierEV  
##          -3.06124           -0.17374            8.00057  
##   UniqueCarrierF9    UniqueCarrierFL    UniqueCarrierMQ  
##           6.87646            1.66187            3.32193  
##   UniqueCarrierOO    UniqueCarrierUA    UniqueCarrierUS  
##           3.20883            4.67548           -5.94365  
##   UniqueCarrierWN    UniqueCarrierXE    UniqueCarrierYV  
##           8.11923            3.16509           -3.60761  
##           DestAEX            DestAGS            DestAMA  
##          58.15424           -0.15789           27.58522  
##           DestANC            DestASE            DestATL  
##        -232.17213          -21.67496           12.76687  
##           DestAUS            DestAVL            DestBFL  
##          69.63988            5.80473          -92.98272  
##           DestBHM            DestBKG            DestBNA  
##          28.61224           18.29574           18.01293  
##           DestBOS            DestBPT            DestBRO  
##         -75.32962           82.43237           49.66455  
##           DestBTR            DestBWI            DestCAE  
##          56.84935          -40.05330           -0.56216  
##           DestCHS            DestCID            DestCLE  
##          -4.00638            0.71345          -24.85108  
##           DestCLT            DestCMH            DestCOS  
##          -7.23471          -20.79405           -5.40721  
##           DestCRP            DestCRW            DestCVG  
##          62.30720           -8.91999           -6.67669  
##           DestDAL            DestDAY            DestDCA  
##          61.06589           -8.24678          -36.49792  
##           DestDEN            DestDFW            DestDSM  
##         -12.10597           53.56293            1.80631  
##           DestDTW            DestECP            DestEGE  
##         -32.78235           34.06769          -21.69472  
##           DestELP            DestEWR            DestFLL  
##          13.62431          -59.08334           -8.01598  
##           DestGJT            DestGPT            DestGRK  
##         -26.03751           47.02062           40.40450  
##           DestGRR            DestGSO            DestGSP  
##         -16.66507          -13.05644            0.20949  
##           DestGUC            DestHDN            DestHNL  
##         -16.80981          -35.29366         -304.28658  
##           DestHOB            DestHRL            DestHSV  
##          24.21431           57.30371           22.89037  
##           DestIAD            DestICT            DestIND  
##         -40.72754           23.25978           -3.10310  
##           DestJAN            DestJAX            DestJFK  
##          50.20447            9.55581                 NA  
##           DestLAS            DestLAX            DestLBB  
##         -56.53602          -67.65614           34.76868  
##           DestLCH            DestLEX            DestLFT  
##          59.30091            1.76444           62.26524  
##           DestLGA            DestLIT            DestLRD  
##         -56.77047           45.80853           46.87300  
##           DestMAF            DestMCI            DestMCO  
##          38.65809           13.49694            0.44968  
##           DestMDW            DestMEM            DestMFE  
##         -16.02234           31.12141           47.79243  
##           DestMIA            DestMKE            DestMLU  
##         -10.34687          -19.55222           43.73989  
##           DestMOB            DestMSP            DestMSY  
##          44.03279          -29.73266           57.34757  
##           DestMTJ            DestOAK            DestOKC  
##         -27.99558         -102.73337           44.81147  
##           DestOMA            DestONT            DestORD  
##           0.88433          -64.93741          -11.20388  
##           DestORF            DestPBI            DestPDX  
##         -35.39639          -13.14363         -113.93145  
##           DestPHL            DestPHX            DestPIT  
##         -46.66906          -32.76640          -31.08851  
##           DestPNS            DestPSP            DestRDU  
##          38.06906          -60.65856          -20.25432  
##           DestRIC            DestRNO            DestRSW  
##         -27.90903          -79.16155           -1.56450  
##           DestSAN            DestSAT            DestSAV  
##         -59.62365           63.74193            4.52944  
##           DestSDF            DestSEA            DestSFO  
##          -0.43665         -118.79375          -93.05168  
##           DestSHV            DestSJC            DestSJU  
##          58.95550          -99.20335          -93.11053  
##           DestSLC            DestSMF            DestSNA  
##         -54.64950          -96.50500          -72.57247  
##           DestSTL            DestTPA            DestTUL  
##          10.98552            7.82899           38.60069  
##           DestTUS            DestTYS            DestVPS  
##         -20.75795            9.49313           32.26251  
##           DestXNA  
##          34.98174
summary(f1)
## 
## Call:
## lm(formula = ArrDelay ~ DayofMonth + DepTime + ActualElapsedTime + 
##     UniqueCarrier + Dest, data = hflights_df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -76.36 -12.83  -5.62   2.91 978.50 
## 
## Coefficients: (1 not defined because of singularities)
##                     Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)       -1.294e+02  1.112e+00 -116.367  < 2e-16 ***
## DayofMonth         6.940e-02  6.831e-03   10.160  < 2e-16 ***
## DepTime            1.439e-02  1.393e-04  103.287  < 2e-16 ***
## ActualElapsedTime  8.675e-01  5.235e-03  165.701  < 2e-16 ***
## UniqueCarrierAS   -1.647e+01  1.735e+00   -9.494  < 2e-16 ***
## UniqueCarrierB6   -5.602e+01  1.449e+00  -38.670  < 2e-16 ***
## UniqueCarrierCO   -3.061e+00  6.676e-01   -4.586 4.53e-06 ***
## UniqueCarrierDL   -1.737e-01  9.776e-01   -0.178 0.858942    
## UniqueCarrierEV    8.001e+00  9.779e-01    8.181 2.82e-16 ***
## UniqueCarrierF9    6.876e+00  1.251e+00    5.497 3.86e-08 ***
## UniqueCarrierFL    1.662e+00  1.041e+00    1.597 0.110236    
## UniqueCarrierMQ    3.322e+00  7.122e-01    4.665 3.09e-06 ***
## UniqueCarrierOO    3.209e+00  7.097e-01    4.522 6.14e-06 ***
## UniqueCarrierUA    4.675e+00  9.434e-01    4.956 7.20e-07 ***
## UniqueCarrierUS   -5.944e+00  8.732e-01   -6.807 1.00e-11 ***
## UniqueCarrierWN    8.119e+00  6.887e-01   11.790  < 2e-16 ***
## UniqueCarrierXE    3.165e+00  6.880e-01    4.600 4.22e-06 ***
## UniqueCarrierYV   -3.608e+00  3.304e+00   -1.092 0.274886    
## DestAEX            5.815e+01  1.265e+00   45.966  < 2e-16 ***
## DestAGS           -1.579e-01  2.831e+01   -0.006 0.995549    
## DestAMA            2.759e+01  9.864e-01   27.966  < 2e-16 ***
## DestANC           -2.322e+02  3.020e+00  -76.870  < 2e-16 ***
## DestASE           -2.167e+01  2.741e+00   -7.907 2.65e-15 ***
## DestATL            1.277e+01  7.314e-01   17.454  < 2e-16 ***
## DestAUS            6.964e+01  7.965e-01   87.430  < 2e-16 ***
## DestAVL            5.805e+00  1.619e+00    3.585 0.000338 ***
## DestBFL           -9.298e+01  1.452e+00  -64.035  < 2e-16 ***
## DestBHM            2.861e+01  7.907e-01   36.187  < 2e-16 ***
## DestBKG            1.830e+01  2.908e+00    6.291 3.16e-10 ***
## DestBNA            1.801e+01  7.337e-01   24.552  < 2e-16 ***
## DestBOS           -7.533e+01  1.013e+00  -74.330  < 2e-16 ***
## DestBPT            8.243e+01  1.635e+01    5.040 4.65e-07 ***
## DestBRO            4.966e+01  9.441e-01   52.607  < 2e-16 ***
## DestBTR            5.685e+01  9.497e-01   59.863  < 2e-16 ***
## DestBWI           -4.005e+01  8.276e-01  -48.397  < 2e-16 ***
## DestCAE           -5.622e-01  1.335e+00   -0.421 0.673678    
## DestCHS           -4.006e+00  9.871e-01   -4.059 4.94e-05 ***
## DestCID            7.134e-01  1.511e+00    0.472 0.636811    
## DestCLE           -2.485e+01  8.529e-01  -29.136  < 2e-16 ***
## DestCLT           -7.235e+00  7.373e-01   -9.813  < 2e-16 ***
## DestCMH           -2.079e+01  9.545e-01  -21.786  < 2e-16 ***
## DestCOS           -5.407e+00  8.991e-01   -6.014 1.82e-09 ***
## DestCRP            6.231e+01  7.839e-01   79.488  < 2e-16 ***
## DestCRW           -8.920e+00  1.624e+00   -5.491 3.99e-08 ***
## DestCVG           -6.677e+00  9.097e-01   -7.339 2.16e-13 ***
## DestDAL            6.107e+01  7.168e-01   85.196  < 2e-16 ***
## DestDAY           -8.247e+00  1.455e+00   -5.668 1.45e-08 ***
## DestDCA           -3.650e+01  8.254e-01  -44.217  < 2e-16 ***
## DestDEN           -1.211e+01  6.931e-01  -17.465  < 2e-16 ***
## DestDFW            5.356e+01  7.892e-01   67.873  < 2e-16 ***
## DestDSM            1.806e+00  1.250e+00    1.445 0.148366    
## DestDTW           -3.278e+01  8.411e-01  -38.976  < 2e-16 ***
## DestECP            3.407e+01  1.206e+00   28.256  < 2e-16 ***
## DestEGE           -2.169e+01  2.829e+00   -7.669 1.74e-14 ***
## DestELP            1.362e+01  7.483e-01   18.207  < 2e-16 ***
## DestEWR           -5.908e+01  8.163e-01  -72.376  < 2e-16 ***
## DestFLL           -8.016e+00  8.024e-01   -9.990  < 2e-16 ***
## DestGJT           -2.604e+01  1.527e+00  -17.053  < 2e-16 ***
## DestGPT            4.702e+01  9.485e-01   49.575  < 2e-16 ***
## DestGRK            4.040e+01  4.526e+00    8.928  < 2e-16 ***
## DestGRR           -1.667e+01  1.234e+00  -13.503  < 2e-16 ***
## DestGSO           -1.306e+01  1.268e+00  -10.295  < 2e-16 ***
## DestGSP            2.095e-01  1.009e+00    0.208 0.835446    
## DestGUC           -1.681e+01  3.127e+00   -5.376 7.60e-08 ***
## DestHDN           -3.529e+01  2.843e+00  -12.415  < 2e-16 ***
## DestHNL           -3.043e+02  2.453e+00 -124.036  < 2e-16 ***
## DestHOB            2.421e+01  1.750e+00   13.841  < 2e-16 ***
## DestHRL            5.730e+01  7.895e-01   72.582  < 2e-16 ***
## DestHSV            2.289e+01  1.100e+00   20.818  < 2e-16 ***
## DestIAD           -4.073e+01  8.890e-01  -45.812  < 2e-16 ***
## DestICT            2.326e+01  9.362e-01   24.844  < 2e-16 ***
## DestIND           -3.103e+00  8.732e-01   -3.554 0.000380 ***
## DestJAN            5.020e+01  8.866e-01   56.626  < 2e-16 ***
## DestJAX            9.556e+00  8.239e-01   11.598  < 2e-16 ***
## DestJFK                   NA         NA       NA       NA    
## DestLAS           -5.654e+01  7.886e-01  -71.687  < 2e-16 ***
## DestLAX           -6.766e+01  7.986e-01  -84.718  < 2e-16 ***
## DestLBB            3.477e+01  9.827e-01   35.380  < 2e-16 ***
## DestLCH            5.930e+01  1.664e+00   35.639  < 2e-16 ***
## DestLEX            1.764e+00  1.304e+00    1.354 0.175888    
## DestLFT            6.227e+01  9.080e-01   68.575  < 2e-16 ***
## DestLGA           -5.677e+01  8.878e-01  -63.949  < 2e-16 ***
## DestLIT            4.581e+01  9.451e-01   48.469  < 2e-16 ***
## DestLRD            4.687e+01  1.048e+00   44.708  < 2e-16 ***
## DestMAF            3.866e+01  8.342e-01   46.342  < 2e-16 ***
## DestMCI            1.350e+01  7.475e-01   18.056  < 2e-16 ***
## DestMCO            4.497e-01  7.254e-01    0.620 0.535309    
## DestMDW           -1.602e+01  8.384e-01  -19.110  < 2e-16 ***
## DestMEM            3.112e+01  8.499e-01   36.619  < 2e-16 ***
## DestMFE            4.779e+01  1.057e+00   45.225  < 2e-16 ***
## DestMIA           -1.035e+01  8.626e-01  -11.995  < 2e-16 ***
## DestMKE           -1.955e+01  9.097e-01  -21.493  < 2e-16 ***
## DestMLU            4.374e+01  1.794e+00   24.386  < 2e-16 ***
## DestMOB            4.403e+01  9.310e-01   47.297  < 2e-16 ***
## DestMSP           -2.973e+01  8.568e-01  -34.702  < 2e-16 ***
## DestMSY            5.735e+01  7.341e-01   78.117  < 2e-16 ***
## DestMTJ           -2.800e+01  2.296e+00  -12.195  < 2e-16 ***
## DestOAK           -1.027e+02  1.364e+00  -75.314  < 2e-16 ***
## DestOKC            4.481e+01  7.819e-01   57.311  < 2e-16 ***
## DestOMA            8.843e-01  8.307e-01    1.065 0.287095    
## DestONT           -6.494e+01  1.147e+00  -56.619  < 2e-16 ***
## DestORD           -1.120e+01  7.014e-01  -15.975  < 2e-16 ***
## DestORF           -3.540e+01  1.210e+00  -29.259  < 2e-16 ***
## DestPBI           -1.314e+01  9.759e-01  -13.468  < 2e-16 ***
## DestPDX           -1.139e+02  1.216e+00  -93.667  < 2e-16 ***
## DestPHL           -4.667e+01  8.745e-01  -53.364  < 2e-16 ***
## DestPHX           -3.277e+01  7.234e-01  -45.295  < 2e-16 ***
## DestPIT           -3.109e+01  9.043e-01  -34.379  < 2e-16 ***
## DestPNS            3.807e+01  9.432e-01   40.360  < 2e-16 ***
## DestPSP           -6.066e+01  2.833e+00  -21.410  < 2e-16 ***
## DestRDU           -2.025e+01  8.823e-01  -22.955  < 2e-16 ***
## DestRIC           -2.791e+01  1.113e+00  -25.078  < 2e-16 ***
## DestRNO           -7.916e+01  1.972e+00  -40.139  < 2e-16 ***
## DestRSW           -1.564e+00  1.076e+00   -1.453 0.146126    
## DestSAN           -5.962e+01  8.458e-01  -70.497  < 2e-16 ***
## DestSAT            6.374e+01  7.841e-01   81.295  < 2e-16 ***
## DestSAV            4.529e+00  1.118e+00    4.052 5.09e-05 ***
## DestSDF           -4.366e-01  9.693e-01   -0.450 0.652362    
## DestSEA           -1.188e+02  1.119e+00 -106.168  < 2e-16 ***
## DestSFO           -9.305e+01  1.011e+00  -92.030  < 2e-16 ***
## DestSHV            5.896e+01  1.227e+00   48.062  < 2e-16 ***
## DestSJC           -9.920e+01  1.253e+00  -79.159  < 2e-16 ***
## DestSJU           -9.311e+01  1.678e+00  -55.482  < 2e-16 ***
## DestSLC           -5.465e+01  8.911e-01  -61.325  < 2e-16 ***
## DestSMF           -9.650e+01  1.207e+00  -79.970  < 2e-16 ***
## DestSNA           -7.257e+01  9.936e-01  -73.040  < 2e-16 ***
## DestSTL            1.099e+01  7.866e-01   13.965  < 2e-16 ***
## DestTPA            7.829e+00  7.560e-01   10.355  < 2e-16 ***
## DestTUL            3.860e+01  7.925e-01   48.710  < 2e-16 ***
## DestTUS           -2.076e+01  9.142e-01  -22.706  < 2e-16 ***
## DestTYS            9.493e+00  9.896e-01    9.593  < 2e-16 ***
## DestVPS            3.226e+01  1.126e+00   28.651  < 2e-16 ***
## DestXNA            3.498e+01  1.035e+00   33.808  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28.3 on 223742 degrees of freedom
##   (3622 observations deleted due to missingness)
## Multiple R-squared:  0.1512, Adjusted R-squared:  0.1507 
## F-statistic: 304.2 on 131 and 223742 DF,  p-value: < 2.2e-16
par(mfrow = c(2,2))
plot(f1)
## Warning: not plotting observations with leverage one:
##   59275

## Warning: not plotting observations with leverage one:
##   59275


4. 본 과목에서 개선할 점을 적어주세요. (보너스 2점)


- 6:30~9:00 수업이 너무 늦은시간이라 집중하기 힘듭니다. 저녁 수업 외에도 오전/오후 수업 중 수업을 오픈하셨으면 합니다.


- Data wrangling 수업 후 통계를 배우는 flow가 흐름이 매끄러울 듯 합니다.


- 각 수업 전에 내용을 예습해 올 수 있도록 숙제를 주셨으면 합니다. (전시간 수업 내용 활용 + 예습 할 수 있는 content)


감사합니다.