all_manzanas <- read_csv("~/Desktop/BarriosSustentables/statistical_tests/all_manzanas_barrio_data_export.csv",
col_types = cols(MANZENT = col_character(),X1 = col_skip()))

all_manzanas_no_na <- all_manzanas %>% filter(!is.na(VALUE))
vars <- unique(all_manzanas_no_na$VAR)

stage_2_test_1 <- all_manzanas_no_na %>% 
  slice_rows("VAR") %>% 
  by_slice(~tidy(shapiro.test(.x$VALUE))) %>%
  unnest()

stage_2_nonormal_test <- all_manzanas_no_na %>% 
  slice_rows(c("VAR")) %>% 
  by_slice(~tidy(kruskal.test(.x$VALUE~factor(.x$CLASS)))) %>%
  unnest() %>% select(VAR,p.value,method)

for(x in vars){
  print(x)
  dunn.test(subset(all_manzanas_no_na,VAR==x)$VALUE,factor(subset(all_manzanas_no_na,VAR==x)$CLASS),list=T,table = F,kw=F)
}
## [1] "Empleados en la misma comuna"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## ----------------------------------------------
## Central - Peri-central    :  2.459003 (0.0070)
## Central - Periférico      : -13.45588 (0.0000)
## Peri-central - Periférico : -19.74629 (0.0000)
## 
## [1] "Acceso a tecnologias de la información"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## ----------------------------------------------
## Central - Peri-central    :  13.03238 (0.0000)
## Central - Periférico      :  15.49025 (0.0000)
## Peri-central - Periférico :  4.661105 (0.0000)
## 
## [1] "Mujeres trabajando"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## ----------------------------------------------
## Central - Peri-central    :  1.601392 (0.0546)
## Central - Periférico      :  10.11208 (0.0000)
## Peri-central - Periférico :  10.91080 (0.0000)
## 
## [1] "Cercanía a Areas Verdes"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## ----------------------------------------------
## Central - Peri-central    :  19.24831 (0.0000)
## Central - Periférico      :  21.10089 (0.0000)
## Peri-central - Periférico :  4.609433 (0.0000)
## 
## [1] "Viviendas de buena calidad"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## ----------------------------------------------
## Central - Peri-central    :  13.46847 (0.0000)
## Central - Periférico      :  4.581147 (0.0000)
## Peri-central - Periférico : -9.614306 (0.0000)
##################################################

stage_3_nonormal_test <- all_manzanas_no_na %>% 
  slice_rows(c("VAR")) %>% 
  by_slice(~tidy(kruskal.test(.x$VALUE~factor(.x$CLASS)))) %>%
  unnest() %>% select(VAR,p.value,method)

for(x in vars){
  print(x)
  dunn.test(subset(all_manzanas_no_na,VAR==x)$VALUE,factor(subset(all_manzanas_no_na,VAR==x)$LOCATION),list=T,table = F,kw=F)
}
## [1] "Empleados en la misma comuna"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## -------------------------------------------
## Concepcion - Copiapo   : -21.29350 (0.0000)
## Concepcion - Coquimbo  : -13.52247 (0.0000)
## Copiapo - Coquimbo     :  8.731342 (0.0000)
## Concepcion - La Serena : -14.49652 (0.0000)
## Copiapo - La Serena    :  3.164301 (0.0008)
## Coquimbo - La Serena   : -4.102057 (0.0000)
## Concepcion - Santiago  :  13.23498 (0.0000)
## Copiapo - Santiago     :  34.85175 (0.0000)
## Coquimbo - Santiago    :  28.19208 (0.0000)
## La Serena - Santiago   :  24.34901 (0.0000)
## Concepcion - Temuco    : -21.98002 (0.0000)
## Copiapo - Temuco       :  1.498391 (0.0670)
## Coquimbo - Temuco      : -7.977240 (0.0000)
## La Serena - Temuco     : -2.083200 (0.0186)
## Santiago - Temuco      : -38.31724 (0.0000)
## Concepcion - Valdivia  : -21.68099 (0.0000)
## Copiapo - Valdivia     : -3.722354 (0.0001)
## Coquimbo - Valdivia    : -11.26744 (0.0000)
## La Serena - Valdivia   : -6.159416 (0.0000)
## Santiago - Valdivia    : -31.93786 (0.0000)
## Temuco - Valdivia      : -5.204391 (0.0000)
## 
## [1] "Acceso a tecnologias de la información"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## -------------------------------------------
## Concepcion - Copiapo   :  2.803120 (0.0025)
## Concepcion - Coquimbo  :  4.339194 (0.0000)
## Copiapo - Coquimbo     :  1.059034 (0.1448)
## Concepcion - La Serena : -0.951251 (0.1707)
## Copiapo - La Serena    : -3.007830 (0.0013)
## Coquimbo - La Serena   : -4.083854 (0.0000)
## Concepcion - Santiago  :  0.913997 (0.1804)
## Copiapo - Santiago     : -2.495048 (0.0063)
## Coquimbo - Santiago    : -4.339467 (0.0000)
## La Serena - Santiago   :  1.619360 (0.0527)
## Concepcion - Temuco    :  4.021526 (0.0000)
## Copiapo - Temuco       :  0.787287 (0.2156)
## Coquimbo - Temuco      : -0.297728 (0.3830)
## La Serena - Temuco     :  3.852639 (0.0001)
## Santiago - Temuco      :  3.960584 (0.0000)
## Concepcion - Valdivia  : -13.13246 (0.0000)
## Copiapo - Valdivia     : -14.12789 (0.0000)
## Coquimbo - Valdivia    : -15.83586 (0.0000)
## La Serena - Valdivia   : -9.987727 (0.0000)
## Santiago - Valdivia    : -14.93565 (0.0000)
## Temuco - Valdivia      : -15.60400 (0.0000)
## 
## [1] "Mujeres trabajando"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## -------------------------------------------
## Concepcion - Copiapo   :  0.919368 (0.1790)
## Concepcion - Coquimbo  : -1.036380 (0.1500)
## Copiapo - Coquimbo     : -1.766307 (0.0387)
## Concepcion - La Serena : -2.405946 (0.0081)
## Copiapo - La Serena    : -2.896534 (0.0019)
## Coquimbo - La Serena   : -1.566605 (0.0586)
## Concepcion - Santiago  : -10.50181 (0.0000)
## Copiapo - Santiago     : -9.318282 (0.0000)
## Coquimbo - Santiago    : -8.309599 (0.0000)
## La Serena - Santiago   : -4.019784 (0.0000)
## Concepcion - Temuco    : -5.075944 (0.0000)
## Copiapo - Temuco       : -5.231353 (0.0000)
## Coquimbo - Temuco      : -3.807841 (0.0001)
## La Serena - Temuco     : -1.381302 (0.0836)
## Santiago - Temuco      :  3.534485 (0.0002)
## Concepcion - Valdivia  : -17.17754 (0.0000)
## Copiapo - Valdivia     : -16.38665 (0.0000)
## Coquimbo - Valdivia    : -15.87518 (0.0000)
## La Serena - Valdivia   : -12.17797 (0.0000)
## Santiago - Valdivia    : -12.26221 (0.0000)
## Temuco - Valdivia      : -13.26871 (0.0000)
## 
## [1] "Cercanía a Areas Verdes"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## -------------------------------------------
## Concepcion - Copiapo   :  0.726961 (0.2336)
## Concepcion - Coquimbo  :  9.811789 (0.0000)
## Copiapo - Coquimbo     :  7.725627 (0.0000)
## Concepcion - La Serena : -0.166240 (0.4340)
## Copiapo - La Serena    : -0.709992 (0.2389)
## Coquimbo - La Serena   : -7.357462 (0.0000)
## Concepcion - Santiago  : -7.273977 (0.0000)
## Copiapo - Santiago     : -6.560411 (0.0000)
## Coquimbo - Santiago    : -18.32364 (0.0000)
## La Serena - Santiago   : -4.444575 (0.0000)
## Concepcion - Temuco    :  1.452402 (0.0732)
## Copiapo - Temuco       :  0.550970 (0.2908)
## Coquimbo - Temuco      : -7.911839 (0.0000)
## La Serena - Temuco     :  1.225497 (0.1102)
## Santiago - Temuco      :  8.372124 (0.0000)
## Concepcion - Valdivia  : -8.807579 (0.0000)
## Copiapo - Valdivia     : -8.597281 (0.0000)
## Coquimbo - Valdivia    : -15.59086 (0.0000)
## La Serena - Valdivia   : -7.119909 (0.0000)
## Santiago - Valdivia    : -5.115543 (0.0000)
## Temuco - Valdivia      : -9.580864 (0.0000)
## 
## [1] "Viviendas de buena calidad"
## 
##                            Comparison of x by group                            
##                                 (No adjustment)                                
## 
## List of pairwise comparisons: Z statistic (p-value)
## -------------------------------------------
## Concepcion - Copiapo   :  12.58871 (0.0000)
## Concepcion - Coquimbo  :  22.86175 (0.0000)
## Copiapo - Coquimbo     :  7.585880 (0.0000)
## Concepcion - La Serena :  0.495816 (0.3100)
## Copiapo - La Serena    : -9.212719 (0.0000)
## Coquimbo - La Serena   : -16.26905 (0.0000)
## Concepcion - Santiago  :  7.901344 (0.0000)
## Copiapo - Santiago     : -8.213079 (0.0000)
## Coquimbo - Santiago    : -20.04154 (0.0000)
## La Serena - Santiago   :  4.471816 (0.0000)
## Concepcion - Temuco    : -0.372232 (0.3549)
## Copiapo - Temuco       : -12.34070 (0.0000)
## Coquimbo - Temuco      : -21.95757 (0.0000)
## La Serena - Temuco     : -0.752124 (0.2260)
## Santiago - Temuco      : -7.640765 (0.0000)
## Concepcion - Valdivia  : -0.063858 (0.4745)
## Copiapo - Valdivia     : -9.560131 (0.0000)
## Coquimbo - Valdivia    : -16.49417 (0.0000)
## La Serena - Valdivia   : -0.452428 (0.3255)
## Santiago - Valdivia    : -4.964675 (0.0000)
## Temuco - Valdivia      :  0.205509 (0.4186)
####################################################



#stage_4_nonormal_test <- all_manzanas_no_na %>% 
#  slice_rows(c("VAR")) %>% 
#  by_slice(~tidy(kruskal.test(.x$VALUE~factor(.x$CLASS)))) %>%
#  unnest() %>% select(VAR,p.value,method)

#for(x in vars){
#  print(x)
#  dunn.test(subset(all_manzanas_no_na,VAR==x)$VALUE,factor(subset(all_manzanas_no_na,VAR==x)$TYPE),list=T,table = F,kw=F)
#}