Select the fields that we will be working with

df <- df[,3:5]
head(df)

Split dataset into training and test set (300 training, 100 test)

library(caTools)
set.seed(1234)
split <- sample.split(df$Purchased, SplitRatio = 0.75)
training_set <- subset(df, split == TRUE)
test_set <- subset(df, split == FALSE)

For Classification,it is better to do feature scaling (normalization)

# Feature Scaling 1 age, 2 is salary
training_set[,1:2] <-  scale(training_set[,1:2])
test_set[,1:2] <-  scale(test_set[,1:2])

Applying Grid Search to find the best parameters

# install.packages("caret")
library(caret)
classifier = train(form = Purchased ~ . , 
                   data = training_set, 
                   method = "svmRadial")
You are trying to do regression and your outcome only has two possible values Are you trying to do classification? If so, use a 2 level factor as your outcome column.
classifier
Support Vector Machines with Radial Basis Function Kernel 

300 samples
  2 predictor

No pre-processing
Resampling: Bootstrapped (25 reps) 
Summary of sample sizes: 300, 300, 300, 300, 300, 300, ... 
Resampling results across tuning parameters:

  C     RMSE       Rsquared 
  0.25  0.2704022  0.6852358
  0.50  0.2741952  0.6796394
  1.00  0.2804945  0.6680970

Tuning parameter 'sigma' was held constant at a value of 2.247319
RMSE was used to select the optimal model using  the smallest value.
The final values used for the model were sigma = 2.247319 and C = 0.25.
classifier$bestTune

applying sVm without using the best tune parameters:

# Create the classifier here
# install.packages("e1071")
# you can also use kernlab
library(e1071)
classifier <- svm(formula = Purchased ~ Age + EstimatedSalary,
                  data = training_set,
                  type = "C-classification",
                  kernel = "radial"
                  ) 
y_pred <-  predict(classifier, newdata=test_set[-3])
cm <- table(test_set[,3], y_pred)
cm
   y_pred
     0  1
  0 55  9
  1  4 32

applying sVm WITH using the best tune parameters:

# Create the classifier here
# install.packages("e1071")
# you can also use kernlab
library(e1071)
classifier <- svm(formula = Purchased ~ Age + EstimatedSalary,
                  data = training_set,
                  type = "C-classification",
                  kernel = "radial", 
                  cost = 0.25, 
                  cross = 10,
                  sigma = 1.22723
                  ) 
y_pred <-  predict(classifier, newdata=test_set[-3])
cm <- table(test_set[,3], y_pred)
cm
   y_pred
     0  1
  0 55  9
  1  4 32
LS0tDQp0aXRsZTogIk1MIFVzaW5nIFIgU2VjdGlvbiAzOSBHcmlkIFNlYXJjaCINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMgU2VjdGlvbiAzOSBHcmlkIFNlYXJjaA0KDQoNCmBgYHtyfQ0KZGYgPC0gIHJlYWQuY3N2KCJHOlxcUlN0dWRpb1xcdWRlbXlcXG1sXFxNYWNoaW5lIExlYXJuaW5nIEFaXFxQYXJ0IDMgLSBDbGFzc2lmaWNhdGlvblxcU2VjdGlvbiAxNyAtIEtlcm5lbCBTVk1cXEtlcm5lbF9TVk1cXFNvY2lhbF9OZXR3b3JrX0Fkcy5jc3YiKQ0KaGVhZChkZikNCmBgYA0KDQojIFNlbGVjdCB0aGUgZmllbGRzIHRoYXQgd2Ugd2lsbCBiZSB3b3JraW5nIHdpdGgNCg0KYGBge3J9DQpkZiA8LSBkZlssMzo1XQ0KaGVhZChkZikNCmBgYA0KDQojIFNwbGl0IGRhdGFzZXQgaW50byB0cmFpbmluZyBhbmQgdGVzdCBzZXQgKDMwMCB0cmFpbmluZywgMTAwIHRlc3QpDQpgYGB7cn0NCmxpYnJhcnkoY2FUb29scykNCnNldC5zZWVkKDEyMzQpDQpzcGxpdCA8LSBzYW1wbGUuc3BsaXQoZGYkUHVyY2hhc2VkLCBTcGxpdFJhdGlvID0gMC43NSkNCnRyYWluaW5nX3NldCA8LSBzdWJzZXQoZGYsIHNwbGl0ID09IFRSVUUpDQp0ZXN0X3NldCA8LSBzdWJzZXQoZGYsIHNwbGl0ID09IEZBTFNFKQ0KDQpgYGANCg0KIyBGb3IgQ2xhc3NpZmljYXRpb24saXQgaXMgYmV0dGVyIHRvIGRvIGZlYXR1cmUgc2NhbGluZyAobm9ybWFsaXphdGlvbikNCg0KYGBge3J9DQojIEZlYXR1cmUgU2NhbGluZyAxIGFnZSwgMiBpcyBzYWxhcnkNCnRyYWluaW5nX3NldFssMToyXSA8LSAgc2NhbGUodHJhaW5pbmdfc2V0WywxOjJdKQ0KdGVzdF9zZXRbLDE6Ml0gPC0gIHNjYWxlKHRlc3Rfc2V0WywxOjJdKQ0KYGBgDQoNCg0KDQoNCiMgQXBwbHlpbmcgR3JpZCBTZWFyY2ggdG8gZmluZCB0aGUgYmVzdCBwYXJhbWV0ZXJzDQoNCmBgYHtyfQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJjYXJldCIpDQpsaWJyYXJ5KGNhcmV0KQ0KY2xhc3NpZmllciA9IHRyYWluKGZvcm0gPSBQdXJjaGFzZWQgfiAuICwgDQogICAgICAgICAgICAgICAgICAgZGF0YSA9IHRyYWluaW5nX3NldCwgDQogICAgICAgICAgICAgICAgICAgbWV0aG9kID0gInN2bVJhZGlhbCIpDQpjbGFzc2lmaWVyDQpjbGFzc2lmaWVyJGJlc3RUdW5lDQoNCmBgYA0KDQojIGFwcGx5aW5nIHNWbSB3aXRob3V0IHVzaW5nIHRoZSBiZXN0IHR1bmUgcGFyYW1ldGVyczoNCmBgYHtyfQ0KIyBDcmVhdGUgdGhlIGNsYXNzaWZpZXIgaGVyZQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJlMTA3MSIpDQojIHlvdSBjYW4gYWxzbyB1c2Uga2VybmxhYg0KbGlicmFyeShlMTA3MSkNCmNsYXNzaWZpZXIgPC0gc3ZtKGZvcm11bGEgPSBQdXJjaGFzZWQgfiBBZ2UgKyBFc3RpbWF0ZWRTYWxhcnksDQogICAgICAgICAgICAgICAgICBkYXRhID0gdHJhaW5pbmdfc2V0LA0KICAgICAgICAgICAgICAgICAgdHlwZSA9ICJDLWNsYXNzaWZpY2F0aW9uIiwNCiAgICAgICAgICAgICAgICAgIGtlcm5lbCA9ICJyYWRpYWwiDQogICAgICAgICAgICAgICAgICApIA0KeV9wcmVkIDwtICBwcmVkaWN0KGNsYXNzaWZpZXIsIG5ld2RhdGE9dGVzdF9zZXRbLTNdKQ0KY20gPC0gdGFibGUodGVzdF9zZXRbLDNdLCB5X3ByZWQpDQpjbQ0KDQpgYGANCg0KIyBhcHBseWluZyBzVm0gV0lUSCB1c2luZyB0aGUgYmVzdCB0dW5lIHBhcmFtZXRlcnM6DQpgYGB7cn0NCiMgQ3JlYXRlIHRoZSBjbGFzc2lmaWVyIGhlcmUNCiMgaW5zdGFsbC5wYWNrYWdlcygiZTEwNzEiKQ0KIyB5b3UgY2FuIGFsc28gdXNlIGtlcm5sYWINCmxpYnJhcnkoZTEwNzEpDQpjbGFzc2lmaWVyIDwtIHN2bShmb3JtdWxhID0gUHVyY2hhc2VkIH4gQWdlICsgRXN0aW1hdGVkU2FsYXJ5LA0KICAgICAgICAgICAgICAgICAgZGF0YSA9IHRyYWluaW5nX3NldCwNCiAgICAgICAgICAgICAgICAgIHR5cGUgPSAiQy1jbGFzc2lmaWNhdGlvbiIsDQogICAgICAgICAgICAgICAgICBrZXJuZWwgPSAicmFkaWFsIiwgDQogICAgICAgICAgICAgICAgICBjb3N0ID0gMC4yNSwgDQogICAgICAgICAgICAgICAgICBjcm9zcyA9IDEwLA0KICAgICAgICAgICAgICAgICAgc2lnbWEgPSAxLjIyNzIzDQogICAgICAgICAgICAgICAgICApIA0KeV9wcmVkIDwtICBwcmVkaWN0KGNsYXNzaWZpZXIsIG5ld2RhdGE9dGVzdF9zZXRbLTNdKQ0KY20gPC0gdGFibGUodGVzdF9zZXRbLDNdLCB5X3ByZWQpDQpjbQ0KDQpgYGANCg==