Regresón Lineal Simple
library(MASS)
library(ISLR)
attach(Boston)
The following objects are masked from Boston (pos = 13):
age, black, chas, crim, dis, indus, lstat, medv, nox, ptratio,
rad, rm, tax, zn
names(Boston)
[1] "crim" "zn" "indus" "chas" "nox" "rm" "age"
[8] "dis" "rad" "tax" "ptratio" "black" "lstat" "medv"
lm.fit
Call:
lm(formula = medv ~ lstat)
Coefficients:
(Intercept) lstat
34.55 -0.95
summary(lm.fit)
Call:
lm(formula = medv ~ lstat)
Residuals:
Min 1Q Median 3Q Max
-15.168 -3.990 -1.318 2.034 24.500
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.55384 0.56263 61.41 <2e-16 ***
lstat -0.95005 0.03873 -24.53 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16
names(lm.fit)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
coef(lm.fit)
(Intercept) lstat
34.5538409 -0.9500494
confint(lm.fit)
2.5 % 97.5 %
(Intercept) 33.448457 35.6592247
lstat -1.026148 -0.8739505
predict(lm.fit, data.frame(lstat=(c(5,10,15))), interval="confidence")
fit lwr upr
1 29.80359 29.00741 30.59978
2 25.05335 24.47413 25.63256
3 20.30310 19.73159 20.87461
predict(lm.fit, data.frame(lstat=(c(5,10,15))), interval="prediction")
fit lwr upr
1 29.80359 17.565675 42.04151
2 25.05335 12.827626 37.27907
3 20.30310 8.077742 32.52846

par(mfrow =c(2,2))
plot(lm.fit)




which.max(hatvalues(lm.fit))
375
375
Regresión Lineal Múltiple:
summary(lm.fit)
Call:
lm(formula = medv ~ lstat + age, data = Boston)
Residuals:
Min 1Q Median 3Q Max
-15.981 -3.978 -1.283 1.968 23.158
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.22276 0.73085 45.458 < 2e-16 ***
lstat -1.03207 0.04819 -21.416 < 2e-16 ***
age 0.03454 0.01223 2.826 0.00491 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 6.173 on 503 degrees of freedom
Multiple R-squared: 0.5513, Adjusted R-squared: 0.5495
F-statistic: 309 on 2 and 503 DF, p-value: < 2.2e-16
summary(lm.fit)
Call:
lm(formula = medv ~ ., data = Boston)
Residuals:
Min 1Q Median 3Q Max
-15.595 -2.730 -0.518 1.777 26.199
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
vif(lm.fit)
crim zn indus chas nox rm age dis rad
1.792192 2.298758 3.991596 1.073995 4.393720 1.933744 3.100826 3.955945 7.484496
tax ptratio black lstat
9.008554 1.799084 1.348521 2.941491
summary(lm.fit)
Call:
lm(formula = medv ~ . - age, data = Boston)
Residuals:
Min 1Q Median 3Q Max
-15.6054 -2.7313 -0.5188 1.7601 26.2243
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.436927 5.080119 7.172 2.72e-12 ***
crim -0.108006 0.032832 -3.290 0.001075 **
zn 0.046334 0.013613 3.404 0.000719 ***
indus 0.020562 0.061433 0.335 0.737989
chas 2.689026 0.859598 3.128 0.001863 **
nox -17.713540 3.679308 -4.814 1.97e-06 ***
rm 3.814394 0.408480 9.338 < 2e-16 ***
dis -1.478612 0.190611 -7.757 5.03e-14 ***
rad 0.305786 0.066089 4.627 4.75e-06 ***
tax -0.012329 0.003755 -3.283 0.001099 **
ptratio -0.952211 0.130294 -7.308 1.10e-12 ***
black 0.009321 0.002678 3.481 0.000544 ***
lstat -0.523852 0.047625 -10.999 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.74 on 493 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7343
F-statistic: 117.3 on 12 and 493 DF, p-value: < 2.2e-16
lm.fit1<-update(lm.fit, ~.-age)
summary(lm(medv~lstat*age, data=Boston))
Call:
lm(formula = medv ~ lstat * age, data = Boston)
Residuals:
Min 1Q Median 3Q Max
-15.806 -4.045 -1.333 2.085 27.552
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***
lstat -1.3921168 0.1674555 -8.313 8.78e-16 ***
age -0.0007209 0.0198792 -0.036 0.9711
lstat:age 0.0041560 0.0018518 2.244 0.0252 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 6.149 on 502 degrees of freedom
Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531
F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16
Predictores Cualitativo
names(Carseats)
[1] "Sales" "CompPrice" "Income" "Advertising" "Population"
[6] "Price" "ShelveLoc" "Age" "Education" "Urban"
[11] "US"
summary(lm.fit)
Call:
lm(formula = Sales ~ . + Income:Advertising + Price:Age, data = Carseats)
Residuals:
Min 1Q Median 3Q Max
-2.9208 -0.7503 0.0177 0.6754 3.3413
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5755654 1.0087470 6.519 2.22e-10 ***
CompPrice 0.0929371 0.0041183 22.567 < 2e-16 ***
Income 0.0108940 0.0026044 4.183 3.57e-05 ***
Advertising 0.0702462 0.0226091 3.107 0.002030 **
Population 0.0001592 0.0003679 0.433 0.665330
Price -0.1008064 0.0074399 -13.549 < 2e-16 ***
ShelveLocGood 4.8486762 0.1528378 31.724 < 2e-16 ***
ShelveLocMedium 1.9532620 0.1257682 15.531 < 2e-16 ***
Age -0.0579466 0.0159506 -3.633 0.000318 ***
Education -0.0208525 0.0196131 -1.063 0.288361
UrbanYes 0.1401597 0.1124019 1.247 0.213171
USYes -0.1575571 0.1489234 -1.058 0.290729
Income:Advertising 0.0007510 0.0002784 2.698 0.007290 **
Price:Age 0.0001068 0.0001333 0.801 0.423812
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.011 on 386 degrees of freedom
Multiple R-squared: 0.8761, Adjusted R-squared: 0.8719
F-statistic: 210 on 13 and 386 DF, p-value: < 2.2e-16
contrasts(Carseats$ShelveLoc)
Good Medium
Bad 0 0
Good 1 0
Medium 0 1
Escribiendo Librerias
LoadLibraries()<-function{
Error: unexpected '{' in "LoadLibraries()<-function{"
LoadLibraries()
[1] "Las Librerias han sido cargadas éxitosamente"
LoadLibraries
function(){
library(ISLR)
library(MASS)
print("Las Librerias han sido cargadas éxitosamente")
}
LS0tDQp0aXRsZTogIkxhYm9yYXRvcmlvICMyIC0gUmVncmVzaW9uZXMgLSBJU0xSIg0KYXV0aG9yOiAiUHJlbmcgQmliYSAtIDA5MDAwMTg1Ig0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCiMjIyBSZWdyZXPzbiBMaW5lYWwgU2ltcGxlDQpgYGB7cn0NCmxpYnJhcnkoTUFTUykNCmxpYnJhcnkoSVNMUikNCmBgYA0KDQpgYGB7cn0NCmRhdGEoIkJvc3RvbiIpDQphdHRhY2goQm9zdG9uKQ0KYGBgDQpgYGB7cn0NCm5hbWVzKEJvc3RvbikNCmBgYA0KYGBge3J9DQpsbS5maXQ8LWxtKG1lZHYgfiBsc3RhdCkNCmxtLmZpdA0KYGBgDQpgYGB7cn0NCnN1bW1hcnkobG0uZml0KQ0KYGBgDQpgYGB7cn0NCm5hbWVzKGxtLmZpdCkNCmBgYA0KYGBge3J9DQpjb2VmKGxtLmZpdCkNCmBgYA0KYGBge3J9DQpjb25maW50KGxtLmZpdCkNCmBgYA0KYGBge3J9DQpwcmVkaWN0KGxtLmZpdCwgZGF0YS5mcmFtZShsc3RhdD0oYyg1LDEwLDE1KSkpLCBpbnRlcnZhbD0iY29uZmlkZW5jZSIpDQpgYGANCmBgYHtyfQ0KcHJlZGljdChsbS5maXQsIGRhdGEuZnJhbWUobHN0YXQ9KGMoNSwxMCwxNSkpKSwgaW50ZXJ2YWw9InByZWRpY3Rpb24iKQ0KDQpgYGANCmBgYHtyfQ0KcGxvdChsc3RhdCwgbWVkdiwgcGNoPTE5LCB0eXBlID0gInAiLCBjb2w9ImJsdWUiKQ0KYWJsaW5lKGxtLmZpdCwgY29sPSJyZWQiLCBsd2Q9MykNCmBgYA0KYGBge3J9DQpwYXIobWZyb3cgPWMoMiwyKSkNCnBsb3QobG0uZml0KQ0KYGBgDQpgYGB7cn0NCnBsb3QocHJlZGljdChsbS5maXQpLCByZXNpZHVhbHMobG0uZml0KSwgcGNoPTE5LCBjb2w9InJlZCIpDQpgYGANCmBgYHtyfQ0KcGxvdChwcmVkaWN0KGxtLmZpdCksIHJzdHVkZW50KGxtLmZpdCksIHBjaD0xOSwgY29sPSJibHVlIikNCmBgYA0KYGBge3J9DQpwbG90KGhhdHZhbHVlcyhsbS5maXQpLCBjb2w9ImdyZWVuIiwgcGNoPTE5KQ0KYGBgDQpgYGB7cn0NCndoaWNoLm1heChoYXR2YWx1ZXMobG0uZml0KSkNCmBgYA0KDQojIyMgUmVncmVzafNuIExpbmVhbCBN+mx0aXBsZToNCmBgYHtyfQ0KbG0uZml0PC1sbShtZWR2IH4gbHN0YXQgKyBhZ2UsIGRhdGE9Qm9zdG9uKQ0Kc3VtbWFyeShsbS5maXQpDQpgYGANCmBgYHtyfQ0KbG0uZml0PC1sbShtZWR2fi4sIGRhdGE9Qm9zdG9uKQ0Kc3VtbWFyeShsbS5maXQpDQpgYGANCmBgYHtyfQ0KbGlicmFyeShjYXIpDQp2aWYobG0uZml0KQ0KYGBgDQpgYGB7cn0NCmxtLmZpdDwtbG0obWVkdn4uIC1hZ2UsIGRhdGE9Qm9zdG9uKQ0Kc3VtbWFyeShsbS5maXQpDQpgYGANCmBgYHtyfQ0KbG0uZml0MTwtdXBkYXRlKGxtLmZpdCwgfi4tYWdlKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShsbShtZWR2fmxzdGF0KmFnZSwgZGF0YT1Cb3N0b24pKQ0KYGBgDQojIyMgVHJhbnNmb3JtYWNpb25lcyBOby1MaW5lYWxlcyBlbiBsb3MgUHJlZGljdG9yZXMNCg0KYGBge3J9DQpsbS5maXQyPC1sbShtZWR2IH4gbHN0YXQgKyBJKGxzdGF0XjIpLCBkYXRhPUJvc3RvbikNCnN1bW1hcnkobG0uZml0MikNCmBgYA0KYGBge3J9DQpsbS5maXQ8LWxtKG1lZHZ+bHN0YXQsIGRhdGE9Qm9zdG9uKQ0KYW5vdmEobG0uZml0LCBsbS5maXQyKQ0KYGBgDQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpDQpwbG90KGxtLmZpdDIpDQpgYGANCmBgYHtyfQ0KbG0uZml0NTwtbG0obWVkdiB+IHBvbHkobHN0YXQsIDUpLCBkYXRhPUJvc3RvbikNCnN1bW1hcnkobG0uZml0NSkNCmBgYA0KYGBge3J9DQpzdW1tYXJ5KGxtKG1lZHYgfiBsb2cocm0pLCBkYXRhPUJvc3RvbikpDQpgYGANCiMjIyBQcmVkaWN0b3JlcyBDdWFsaXRhdGl2bw0KYGBge3J9DQpsaWJyYXJ5KElTTFIpDQpkYXRhKENhcnNlYXRzKQ0KZml4KENhcnNlYXRzKQ0KbmFtZXMoQ2Fyc2VhdHMpDQpgYGANCmBgYHtyfQ0KbG0uZml0PC1sbShTYWxlcz8/Py4rIEluY29tZSA6QWR2ZXJ0aXNpbmcgK1ByaWNlIDpBZ2UgLGRhdGE9Q2Fyc2VhdHMpDQpzdW1tYXJ5KGxtLmZpdCkNCmBgYA0KYGBge3J9DQpjb250cmFzdHMoQ2Fyc2VhdHMkU2hlbHZlTG9jKQ0KYGBgDQoNCiMjIyBFc2NyaWJpZW5kbyBMaWJyZXJpYXMNCmBgYHtyfQ0KTG9hZExpYnJhcmllczwtZnVuY3Rpb24oKXsNCiAgbGlicmFyeShJU0xSKQ0KICBsaWJyYXJ5KE1BU1MpDQogIHByaW50KCJMYXMgTGlicmVyaWFzIGhhbiBzaWRvIGNhcmdhZGFzIOl4aXRvc2FtZW50ZSIpDQp9DQpgYGANCg0KYGBge3J9DQpMb2FkTGlicmFyaWVzKCkNCmBgYA0KYGBge3J9DQpMb2FkTGlicmFyaWVzDQpgYGANCg0K