Regresón Lineal Simple

library(MASS)
library(ISLR)
attach(Boston)
The following objects are masked from Boston (pos = 13):

    age, black, chas, crim, dis, indus, lstat, medv, nox, ptratio,
    rad, rm, tax, zn
names(Boston)
 [1] "crim"    "zn"      "indus"   "chas"    "nox"     "rm"      "age"    
 [8] "dis"     "rad"     "tax"     "ptratio" "black"   "lstat"   "medv"   
lm.fit

Call:
lm(formula = medv ~ lstat)

Coefficients:
(Intercept)        lstat  
      34.55        -0.95  
summary(lm.fit)

Call:
lm(formula = medv ~ lstat)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.168  -3.990  -1.318   2.034  24.500 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 34.55384    0.56263   61.41   <2e-16 ***
lstat       -0.95005    0.03873  -24.53   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared:  0.5441,    Adjusted R-squared:  0.5432 
F-statistic: 601.6 on 1 and 504 DF,  p-value: < 2.2e-16
names(lm.fit)
 [1] "coefficients"  "residuals"     "effects"       "rank"         
 [5] "fitted.values" "assign"        "qr"            "df.residual"  
 [9] "xlevels"       "call"          "terms"         "model"        
coef(lm.fit)
(Intercept)       lstat 
 34.5538409  -0.9500494 
confint(lm.fit)
                2.5 %     97.5 %
(Intercept) 33.448457 35.6592247
lstat       -1.026148 -0.8739505
predict(lm.fit, data.frame(lstat=(c(5,10,15))), interval="confidence")
       fit      lwr      upr
1 29.80359 29.00741 30.59978
2 25.05335 24.47413 25.63256
3 20.30310 19.73159 20.87461
predict(lm.fit, data.frame(lstat=(c(5,10,15))), interval="prediction")
       fit       lwr      upr
1 29.80359 17.565675 42.04151
2 25.05335 12.827626 37.27907
3 20.30310  8.077742 32.52846

par(mfrow =c(2,2))
plot(lm.fit)

which.max(hatvalues(lm.fit))
375 
375 

Regresión Lineal Múltiple:

summary(lm.fit)

Call:
lm(formula = medv ~ lstat + age, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.981  -3.978  -1.283   1.968  23.158 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 33.22276    0.73085  45.458  < 2e-16 ***
lstat       -1.03207    0.04819 -21.416  < 2e-16 ***
age          0.03454    0.01223   2.826  0.00491 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.173 on 503 degrees of freedom
Multiple R-squared:  0.5513,    Adjusted R-squared:  0.5495 
F-statistic:   309 on 2 and 503 DF,  p-value: < 2.2e-16
summary(lm.fit)

Call:
lm(formula = medv ~ ., data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.595  -2.730  -0.518   1.777  26.199 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  3.646e+01  5.103e+00   7.144 3.28e-12 ***
crim        -1.080e-01  3.286e-02  -3.287 0.001087 ** 
zn           4.642e-02  1.373e-02   3.382 0.000778 ***
indus        2.056e-02  6.150e-02   0.334 0.738288    
chas         2.687e+00  8.616e-01   3.118 0.001925 ** 
nox         -1.777e+01  3.820e+00  -4.651 4.25e-06 ***
rm           3.810e+00  4.179e-01   9.116  < 2e-16 ***
age          6.922e-04  1.321e-02   0.052 0.958229    
dis         -1.476e+00  1.995e-01  -7.398 6.01e-13 ***
rad          3.060e-01  6.635e-02   4.613 5.07e-06 ***
tax         -1.233e-02  3.760e-03  -3.280 0.001112 ** 
ptratio     -9.527e-01  1.308e-01  -7.283 1.31e-12 ***
black        9.312e-03  2.686e-03   3.467 0.000573 ***
lstat       -5.248e-01  5.072e-02 -10.347  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared:  0.7406,    Adjusted R-squared:  0.7338 
F-statistic: 108.1 on 13 and 492 DF,  p-value: < 2.2e-16
vif(lm.fit)
    crim       zn    indus     chas      nox       rm      age      dis      rad 
1.792192 2.298758 3.991596 1.073995 4.393720 1.933744 3.100826 3.955945 7.484496 
     tax  ptratio    black    lstat 
9.008554 1.799084 1.348521 2.941491 
summary(lm.fit)

Call:
lm(formula = medv ~ . - age, data = Boston)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.6054  -2.7313  -0.5188   1.7601  26.2243 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  36.436927   5.080119   7.172 2.72e-12 ***
crim         -0.108006   0.032832  -3.290 0.001075 ** 
zn            0.046334   0.013613   3.404 0.000719 ***
indus         0.020562   0.061433   0.335 0.737989    
chas          2.689026   0.859598   3.128 0.001863 ** 
nox         -17.713540   3.679308  -4.814 1.97e-06 ***
rm            3.814394   0.408480   9.338  < 2e-16 ***
dis          -1.478612   0.190611  -7.757 5.03e-14 ***
rad           0.305786   0.066089   4.627 4.75e-06 ***
tax          -0.012329   0.003755  -3.283 0.001099 ** 
ptratio      -0.952211   0.130294  -7.308 1.10e-12 ***
black         0.009321   0.002678   3.481 0.000544 ***
lstat        -0.523852   0.047625 -10.999  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.74 on 493 degrees of freedom
Multiple R-squared:  0.7406,    Adjusted R-squared:  0.7343 
F-statistic: 117.3 on 12 and 493 DF,  p-value: < 2.2e-16
lm.fit1<-update(lm.fit, ~.-age)
summary(lm(medv~lstat*age, data=Boston))

Call:
lm(formula = medv ~ lstat * age, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.806  -4.045  -1.333   2.085  27.552 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 36.0885359  1.4698355  24.553  < 2e-16 ***
lstat       -1.3921168  0.1674555  -8.313 8.78e-16 ***
age         -0.0007209  0.0198792  -0.036   0.9711    
lstat:age    0.0041560  0.0018518   2.244   0.0252 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.149 on 502 degrees of freedom
Multiple R-squared:  0.5557,    Adjusted R-squared:  0.5531 
F-statistic: 209.3 on 3 and 502 DF,  p-value: < 2.2e-16

Transformaciones No-Lineales en los Predictores

summary(lm.fit2)

Call:
lm(formula = medv ~ lstat + I(lstat^2), data = Boston)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.2834  -3.8313  -0.5295   2.3095  25.4148 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 42.862007   0.872084   49.15   <2e-16 ***
lstat       -2.332821   0.123803  -18.84   <2e-16 ***
I(lstat^2)   0.043547   0.003745   11.63   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.524 on 503 degrees of freedom
Multiple R-squared:  0.6407,    Adjusted R-squared:  0.6393 
F-statistic: 448.5 on 2 and 503 DF,  p-value: < 2.2e-16
anova(lm.fit, lm.fit2)
Analysis of Variance Table

Model 1: medv ~ lstat
Model 2: medv ~ lstat + I(lstat^2)
  Res.Df   RSS Df Sum of Sq     F    Pr(>F)    
1    504 19472                                 
2    503 15347  1    4125.1 135.2 < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
par(mfrow=c(2,2))
plot(lm.fit2)

summary(lm.fit5)

Call:
lm(formula = medv ~ poly(lstat, 5), data = Boston)

Residuals:
     Min       1Q   Median       3Q      Max 
-13.5433  -3.1039  -0.7052   2.0844  27.1153 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)       22.5328     0.2318  97.197  < 2e-16 ***
poly(lstat, 5)1 -152.4595     5.2148 -29.236  < 2e-16 ***
poly(lstat, 5)2   64.2272     5.2148  12.316  < 2e-16 ***
poly(lstat, 5)3  -27.0511     5.2148  -5.187 3.10e-07 ***
poly(lstat, 5)4   25.4517     5.2148   4.881 1.42e-06 ***
poly(lstat, 5)5  -19.2524     5.2148  -3.692 0.000247 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.215 on 500 degrees of freedom
Multiple R-squared:  0.6817,    Adjusted R-squared:  0.6785 
F-statistic: 214.2 on 5 and 500 DF,  p-value: < 2.2e-16
summary(lm(medv ~ log(rm), data=Boston))

Call:
lm(formula = medv ~ log(rm), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-19.487  -2.875  -0.104   2.837  39.816 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -76.488      5.028  -15.21   <2e-16 ***
log(rm)       54.055      2.739   19.73   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.915 on 504 degrees of freedom
Multiple R-squared:  0.4358,    Adjusted R-squared:  0.4347 
F-statistic: 389.3 on 1 and 504 DF,  p-value: < 2.2e-16

Predictores Cualitativo

names(Carseats)
 [1] "Sales"       "CompPrice"   "Income"      "Advertising" "Population" 
 [6] "Price"       "ShelveLoc"   "Age"         "Education"   "Urban"      
[11] "US"         
summary(lm.fit)

Call:
lm(formula = Sales ~ . + Income:Advertising + Price:Age, data = Carseats)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.9208 -0.7503  0.0177  0.6754  3.3413 

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)         6.5755654  1.0087470   6.519 2.22e-10 ***
CompPrice           0.0929371  0.0041183  22.567  < 2e-16 ***
Income              0.0108940  0.0026044   4.183 3.57e-05 ***
Advertising         0.0702462  0.0226091   3.107 0.002030 ** 
Population          0.0001592  0.0003679   0.433 0.665330    
Price              -0.1008064  0.0074399 -13.549  < 2e-16 ***
ShelveLocGood       4.8486762  0.1528378  31.724  < 2e-16 ***
ShelveLocMedium     1.9532620  0.1257682  15.531  < 2e-16 ***
Age                -0.0579466  0.0159506  -3.633 0.000318 ***
Education          -0.0208525  0.0196131  -1.063 0.288361    
UrbanYes            0.1401597  0.1124019   1.247 0.213171    
USYes              -0.1575571  0.1489234  -1.058 0.290729    
Income:Advertising  0.0007510  0.0002784   2.698 0.007290 ** 
Price:Age           0.0001068  0.0001333   0.801 0.423812    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.011 on 386 degrees of freedom
Multiple R-squared:  0.8761,    Adjusted R-squared:  0.8719 
F-statistic:   210 on 13 and 386 DF,  p-value: < 2.2e-16
contrasts(Carseats$ShelveLoc)
       Good Medium
Bad       0      0
Good      1      0
Medium    0      1

Escribiendo Librerias

LoadLibraries()<-function{
Error: unexpected '{' in "LoadLibraries()<-function{"
LoadLibraries()
[1] "Las Librerias han sido cargadas éxitosamente"
LoadLibraries
function(){
  library(ISLR)
  library(MASS)
  print("Las Librerias han sido cargadas éxitosamente")
}
LS0tDQp0aXRsZTogIkxhYm9yYXRvcmlvICMyIC0gUmVncmVzaW9uZXMgLSBJU0xSIg0KYXV0aG9yOiAiUHJlbmcgQmliYSAtIDA5MDAwMTg1Ig0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCiMjIyBSZWdyZXPzbiBMaW5lYWwgU2ltcGxlDQpgYGB7cn0NCmxpYnJhcnkoTUFTUykNCmxpYnJhcnkoSVNMUikNCmBgYA0KDQpgYGB7cn0NCmRhdGEoIkJvc3RvbiIpDQphdHRhY2goQm9zdG9uKQ0KYGBgDQpgYGB7cn0NCm5hbWVzKEJvc3RvbikNCmBgYA0KYGBge3J9DQpsbS5maXQ8LWxtKG1lZHYgfiBsc3RhdCkNCmxtLmZpdA0KYGBgDQpgYGB7cn0NCnN1bW1hcnkobG0uZml0KQ0KYGBgDQpgYGB7cn0NCm5hbWVzKGxtLmZpdCkNCmBgYA0KYGBge3J9DQpjb2VmKGxtLmZpdCkNCmBgYA0KYGBge3J9DQpjb25maW50KGxtLmZpdCkNCmBgYA0KYGBge3J9DQpwcmVkaWN0KGxtLmZpdCwgZGF0YS5mcmFtZShsc3RhdD0oYyg1LDEwLDE1KSkpLCBpbnRlcnZhbD0iY29uZmlkZW5jZSIpDQpgYGANCmBgYHtyfQ0KcHJlZGljdChsbS5maXQsIGRhdGEuZnJhbWUobHN0YXQ9KGMoNSwxMCwxNSkpKSwgaW50ZXJ2YWw9InByZWRpY3Rpb24iKQ0KDQpgYGANCmBgYHtyfQ0KcGxvdChsc3RhdCwgbWVkdiwgcGNoPTE5LCB0eXBlID0gInAiLCBjb2w9ImJsdWUiKQ0KYWJsaW5lKGxtLmZpdCwgY29sPSJyZWQiLCBsd2Q9MykNCmBgYA0KYGBge3J9DQpwYXIobWZyb3cgPWMoMiwyKSkNCnBsb3QobG0uZml0KQ0KYGBgDQpgYGB7cn0NCnBsb3QocHJlZGljdChsbS5maXQpLCByZXNpZHVhbHMobG0uZml0KSwgcGNoPTE5LCBjb2w9InJlZCIpDQpgYGANCmBgYHtyfQ0KcGxvdChwcmVkaWN0KGxtLmZpdCksIHJzdHVkZW50KGxtLmZpdCksIHBjaD0xOSwgY29sPSJibHVlIikNCmBgYA0KYGBge3J9DQpwbG90KGhhdHZhbHVlcyhsbS5maXQpLCBjb2w9ImdyZWVuIiwgcGNoPTE5KQ0KYGBgDQpgYGB7cn0NCndoaWNoLm1heChoYXR2YWx1ZXMobG0uZml0KSkNCmBgYA0KDQojIyMgUmVncmVzafNuIExpbmVhbCBN+mx0aXBsZToNCmBgYHtyfQ0KbG0uZml0PC1sbShtZWR2IH4gbHN0YXQgKyBhZ2UsIGRhdGE9Qm9zdG9uKQ0Kc3VtbWFyeShsbS5maXQpDQpgYGANCmBgYHtyfQ0KbG0uZml0PC1sbShtZWR2fi4sIGRhdGE9Qm9zdG9uKQ0Kc3VtbWFyeShsbS5maXQpDQpgYGANCmBgYHtyfQ0KbGlicmFyeShjYXIpDQp2aWYobG0uZml0KQ0KYGBgDQpgYGB7cn0NCmxtLmZpdDwtbG0obWVkdn4uIC1hZ2UsIGRhdGE9Qm9zdG9uKQ0Kc3VtbWFyeShsbS5maXQpDQpgYGANCmBgYHtyfQ0KbG0uZml0MTwtdXBkYXRlKGxtLmZpdCwgfi4tYWdlKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShsbShtZWR2fmxzdGF0KmFnZSwgZGF0YT1Cb3N0b24pKQ0KYGBgDQojIyMgVHJhbnNmb3JtYWNpb25lcyBOby1MaW5lYWxlcyBlbiBsb3MgUHJlZGljdG9yZXMNCg0KYGBge3J9DQpsbS5maXQyPC1sbShtZWR2IH4gbHN0YXQgKyBJKGxzdGF0XjIpLCBkYXRhPUJvc3RvbikNCnN1bW1hcnkobG0uZml0MikNCmBgYA0KYGBge3J9DQpsbS5maXQ8LWxtKG1lZHZ+bHN0YXQsIGRhdGE9Qm9zdG9uKQ0KYW5vdmEobG0uZml0LCBsbS5maXQyKQ0KYGBgDQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpDQpwbG90KGxtLmZpdDIpDQpgYGANCmBgYHtyfQ0KbG0uZml0NTwtbG0obWVkdiB+IHBvbHkobHN0YXQsIDUpLCBkYXRhPUJvc3RvbikNCnN1bW1hcnkobG0uZml0NSkNCmBgYA0KYGBge3J9DQpzdW1tYXJ5KGxtKG1lZHYgfiBsb2cocm0pLCBkYXRhPUJvc3RvbikpDQpgYGANCiMjIyBQcmVkaWN0b3JlcyBDdWFsaXRhdGl2bw0KYGBge3J9DQpsaWJyYXJ5KElTTFIpDQpkYXRhKENhcnNlYXRzKQ0KZml4KENhcnNlYXRzKQ0KbmFtZXMoQ2Fyc2VhdHMpDQpgYGANCmBgYHtyfQ0KbG0uZml0PC1sbShTYWxlcz8/Py4rIEluY29tZSA6QWR2ZXJ0aXNpbmcgK1ByaWNlIDpBZ2UgLGRhdGE9Q2Fyc2VhdHMpDQpzdW1tYXJ5KGxtLmZpdCkNCmBgYA0KYGBge3J9DQpjb250cmFzdHMoQ2Fyc2VhdHMkU2hlbHZlTG9jKQ0KYGBgDQoNCiMjIyBFc2NyaWJpZW5kbyBMaWJyZXJpYXMNCmBgYHtyfQ0KTG9hZExpYnJhcmllczwtZnVuY3Rpb24oKXsNCiAgbGlicmFyeShJU0xSKQ0KICBsaWJyYXJ5KE1BU1MpDQogIHByaW50KCJMYXMgTGlicmVyaWFzIGhhbiBzaWRvIGNhcmdhZGFzIOl4aXRvc2FtZW50ZSIpDQp9DQpgYGANCg0KYGBge3J9DQpMb2FkTGlicmFyaWVzKCkNCmBgYA0KYGBge3J9DQpMb2FkTGlicmFyaWVzDQpgYGANCg0K