참고 사이트

$$X^2_{i,j} = \sqrt{b^2 - 4ac}$$

\[X^2_{i,j} = \sqrt{b^2 - 4ac}\]

\[\sum_{i=1}^{n}\left( \frac{X_i}{Y_i} \right)\]

\[\alpha, \beta, \gamma, \Gamma\]

$$a \pm b$$

\[a \pm b\]

$$x \ge 15$$

\[x \ge 15\]

$$a_i \ge 0~~~\forall i$$

\[a_i \ge 0~~~\forall i\]

$$\int_0^{2\pi} \sin x~dx$$

\[\int_0^{2\pi} \sin x~dx\]

$$\begin{array}
{rrr}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
$$

\[\begin{array} {rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \]

$$\mathbf{X} = \left[\begin{array}
{rrr}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

\[\mathbf{X} = \left[\begin{array} {rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right] \]

$$ 
%% Comment -- define some macros
\def\Xbar{\overline{X}_\bullet}
\def\sumn{\sum_{i=1}^{n}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{align}
\sumn \left(X_i - \Xbar\right) &= \sumn X_i - \sumn \Xbar \\
                              &= \sumn X_i - n \Xbar \\
                              &= \sumn X_i - \sumn X_i \\
                              &= 0
\end{align}
$$

\[ %% Comment -- define some macros \def\Xbar{\overline{X}_\bullet} \def\sumn{\sum_{i=1}^{n}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \sumn \left(X_i - \Xbar\right) &= \sumn X_i - \sumn \Xbar \\ &= \sumn X_i - n \Xbar \\ &= \sumn X_i - \sumn X_i \\ &= 0 \end{align} \]

$$
\begin{align}
    3+x &=4 && \text{(Solve for} x \text{.)}\\
    x &=4-3 && \text{(Subtract 3 from both sides.)}\\
    x &=1   && \text{(Yielding the solution.)}
\end{align}
$$

``` \[ \begin{align} 3+x &=4 && \text{(Solve for} x \text{.)}\\ x &=4-3 && \text{(Subtract 3 from both sides.)}\\ x &=1 && \text{(Yielding the solution.)} \end{align} \]