La siguiente imagen sirve para confirmar los datos obtenidos.

Imagen de contraste de datos

Imagen de contraste de datos

Carga de librerias y creación del diseño de la encuesta

library(haven)
library(tidyverse)
library(survey)
library(srvyr)
test <- read_sav("/Users/robsalasco/Desktop/Thesis/r/employment/data/ENE/2013/ENE 2013 11 OND.sav")
test_svydsgn <- test %>% as_survey_design(weights = fact, strata = estrato, ids = id_directorio)

Calculando n (coincide)

t <- as.data.frame(svytable(~estrato+sexo,test_svydsgn))
n <- sum(t$Freq)
n
[1] 17712758

Datos por sexo masculino (coincide)

sum(t[t$sexo==1,]$Freq)
[1] 8770573

Datos por sexo femenino (coincide)

sum(t[t$sexo==2,]$Freq)
[1] 8942185

Metodología para obtener ocupados y desocupados

Metodología INE

Metodología INE

Calculo de ocupados usando metodología (no coincide)

test_svydsgn_ocup <- test %>% filter(edad>14) %>% filter(a3==1|a4==1|a6>0&a6<6|a7==1|a8==1) %>% as_survey_design(weights = fact, strata = estrato, ids = id_directorio)
t1<-as.data.frame(svytable(~estrato+sexo,test_svydsgn_ocup))
sum(t1$Freq)
[1] 7904048

Calculo de desocupados usando metodología (no coincide)

test_svydsgn_noocup <- test %>% filter(edad>14) %>% filter(a5==2) %>% as_survey_design(weights = fact, strata = estrato, ids = id_directorio)
t2<-as.data.frame(svytable(~estrato+sexo,test_svydsgn_noocup))
sum(t2$Freq)
[1] 6034175
LS0tCnRpdGxlOiAiQW5hbGlzaXMgTkVORSBPQ1QtTk9WLURJQyAyMDEzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpMYSBzaWd1aWVudGUgaW1hZ2VuIHNpcnZlIHBhcmEgY29uZmlybWFyIGxvcyBkYXRvcyBvYnRlbmlkb3MuCgohW0ltYWdlbiBkZSBjb250cmFzdGUgZGUgZGF0b3NdKGNvbnRyYXN0LmpwZWcpCgojIyMgQ2FyZ2EgZGUgbGlicmVyaWFzIHkgY3JlYWNpw7NuIGRlbCBkaXNlw7FvIGRlIGxhIGVuY3Vlc3RhCgpgYGB7cix3YXJuaW5nPUYsIGVjaG89VFJVRX0KbGlicmFyeShoYXZlbikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoc3VydmV5KQpsaWJyYXJ5KHNydnlyKQp0ZXN0IDwtIHJlYWRfc2F2KCIvVXNlcnMvcm9ic2FsYXNjby9EZXNrdG9wL1RoZXNpcy9yL2VtcGxveW1lbnQvZGF0YS9FTkUvMjAxMy9FTkUgMjAxMyAxMSBPTkQuc2F2IikKCnRlc3Rfc3Z5ZHNnbiA8LSB0ZXN0ICU+JSBhc19zdXJ2ZXlfZGVzaWduKHdlaWdodHMgPSBmYWN0LCBzdHJhdGEgPSBlc3RyYXRvLCBpZHMgPSBpZF9kaXJlY3RvcmlvKQpgYGAKCiMjIyBDYWxjdWxhbmRvICpuKiAoY29pbmNpZGUpCgpgYGB7ciwgZWNobz1UUlVFfQp0IDwtIGFzLmRhdGEuZnJhbWUoc3Z5dGFibGUofmVzdHJhdG8rc2V4byx0ZXN0X3N2eWRzZ24pKQpuIDwtIHN1bSh0JEZyZXEpCm4KYGBgCgojIyMgRGF0b3MgcG9yIHNleG8gbWFzY3VsaW5vIChjb2luY2lkZSkKCmBgYHtyLCBlY2hvPVRSVUV9CnN1bSh0W3Qkc2V4bz09MSxdJEZyZXEpCmBgYAoKIyMjIERhdG9zIHBvciBzZXhvIGZlbWVuaW5vIChjb2luY2lkZSkKCmBgYHtyLCBlY2hvPVRSVUV9CnN1bSh0W3Qkc2V4bz09MixdJEZyZXEpCmBgYAoKIyMgTWV0b2RvbG9nw61hIHBhcmEgb2J0ZW5lciBvY3VwYWRvcyB5IGRlc29jdXBhZG9zCgohW01ldG9kb2xvZ8OtYSBJTkVdKG1ldG8ucG5nKQoKCiMjIyBDYWxjdWxvIGRlIG9jdXBhZG9zIHVzYW5kbyBtZXRvZG9sb2fDrWEgKG5vIGNvaW5jaWRlKQoKYGBge3IsIGVjaG89VFJVRX0KdGVzdF9zdnlkc2duX29jdXAgPC0gdGVzdCAlPiUgZmlsdGVyKGVkYWQ+MTQpICU+JSBmaWx0ZXIoYTM9PTF8YTQ9PTF8YTY+MCZhNjw2fGE3PT0xfGE4PT0xKSAlPiUgYXNfc3VydmV5X2Rlc2lnbih3ZWlnaHRzID0gZmFjdCwgc3RyYXRhID0gZXN0cmF0bywgaWRzID0gaWRfZGlyZWN0b3JpbykKdDE8LWFzLmRhdGEuZnJhbWUoc3Z5dGFibGUofmVzdHJhdG8rc2V4byx0ZXN0X3N2eWRzZ25fb2N1cCkpCnN1bSh0MSRGcmVxKQpgYGAKCiMjIyBDYWxjdWxvIGRlIGRlc29jdXBhZG9zIHVzYW5kbyBtZXRvZG9sb2fDrWEgKG5vIGNvaW5jaWRlKQoKYGBge3IsIGVjaG89VFJVRX0KdGVzdF9zdnlkc2duX25vb2N1cCA8LSB0ZXN0ICU+JSBmaWx0ZXIoZWRhZD4xNCkgJT4lIGZpbHRlcihhNT09MikgJT4lIGFzX3N1cnZleV9kZXNpZ24od2VpZ2h0cyA9IGZhY3QsIHN0cmF0YSA9IGVzdHJhdG8sIGlkcyA9IGlkX2RpcmVjdG9yaW8pCnQyPC1hcy5kYXRhLmZyYW1lKHN2eXRhYmxlKH5lc3RyYXRvK3NleG8sdGVzdF9zdnlkc2duX25vb2N1cCkpCnN1bSh0MiRGcmVxKQpgYGAKCgo=