Main Analyses
getNodeMeans <- function(one.paper.set, this.analysis, this.network) {
mean.degree = node.data %>%
filter(analysis == this.analysis, network == this.network) %>%
filter(as.character(node_name) %in% unlist(one.paper.set)) %>%
summarize(mean.degree = mean(degree, na.rm = TRUE),
log.mean.closeness = log(mean(closeness))) %>%
as.numeric()
return(mean.degree)
}
makeNodePlots <- function(d, iv){
d %>%
filter(node.measure == iv) %>%
select(d_calc, residual.d, node.measure, node.value, short_name) %>%
gather("iv", "iv.value", 1:2) %>%
na.omit(.) %>%
ggplot(aes(x = node.value, y = iv.value)) +
ggtitle(iv)+
facet_grid(iv ~ short_name , scales = "free") +
geom_point() +
geom_smooth(method = "lm", , se = FALSE)
}co-citation and references
Two articles are linked when both are cited in a third article. This means
wos$CR <- str_replace_all(as.character(wos$CR), "DOI;", "DOI ")
fields = strsplit(wos$CR, ";")
dois_long = lapply(fields, function(x) {str_replace_all(x, ".* DOI ", "")})
dois.clean = lapply(dois_long, function(x) {x[str_detect(x,"/")]})
names(dois.clean) = wos$DI
md.cr.df_all = map(dois.clean, getNodeMeans,
"co-citation", "references") %>%
bind_rows() %>%
mutate(node.measure = c("mean.degree", "log.mean.closeness")) %>%
gather("doi", "node.value", -node.measure) %>%
left_join(paper.data)
makeNodePlots(md.cr.df_all, "mean.degree")makeNodePlots(md.cr.df_all, "log.mean.closeness")MODELS
get_betas <- function(iv, dv, this.d){
d <- this.d %>%
filter(node.measure == iv) %>%
gather("dv.measure", "dv.value", c(-1:-4, -8)) %>%
filter(dv.measure == dv) %>%
filter(!is.na(short_name))
model <- summary(lmer(dv.value ~ node.value + n + (1|short_name), d))
t.node.measure <- model$coefficients["node.value", "t value"]
data.frame(dv = dv, iv = iv, t = t.node.measure)
}
model.combos = expand.grid(ivs = c("mean.degree", "log.mean.closeness"),
dvs = c("d_calc", "residual.d")) map2_df(model.combos$ivs, model.combos$dvs, get_betas, md.cr.df_all) %>%
bind_rows() %>%
mutate(large = ifelse(abs(t) > 2, "*", "")) %>%
kable()| dv | iv | t | large |
|---|---|---|---|
| d_calc | mean.degree | -4.0097252 | * |
| d_calc | log.mean.closeness | 1.4180078 | |
| residual.d | mean.degree | -2.3031564 | * |
| residual.d | log.mean.closeness | 0.1550964 |
co-occurrences and keywords
keywords = strsplit(wos$ID, ";")
names(keywords) = wos$DI
md.cok.df_all = map(keywords, getNodeMeans,
"co-occurrences", "keywords") %>%
bind_rows() %>%
mutate(node.measure = c("mean.degree", "log.mean.closeness")) %>%
gather("doi", "node.value", -node.measure) %>%
left_join(paper.data)
makeNodePlots(md.cok.df_all, "mean.degree")makeNodePlots(md.cok.df_all, "log.mean.closeness")MODELS
map2_df(model.combos$ivs, model.combos$dvs, get_betas, md.cok.df_all) %>%
bind_rows() %>%
mutate(large = ifelse(abs(t) > 2, "*", "")) %>%
kable()| dv | iv | t | large |
|---|---|---|---|
| d_calc | mean.degree | 0.4312527 | |
| d_calc | log.mean.closeness | 4.1688149 | * |
| residual.d | mean.degree | 0.7054020 | |
| residual.d | log.mean.closeness | 2.0978467 | * |