This is some text.
library(tidyverse)
ydat <- read_csv("data/brauer2007_tidy.csv")
that was easy, let’s do some analysis!
library(knitr)
ydat %>%
group_by(nutrient, rate) %>%
filter(nutrient!="Glucose") %>%
summarize(meanexp=mean(expression)) %>%
mutate(meanexp=signif(meanexp, 2)) %>%
kable()
| nutrient | rate | meanexp |
|---|---|---|
| Ammonia | 0.05 | 0.01400 |
| Ammonia | 0.10 | 0.01500 |
| Ammonia | 0.15 | 0.00410 |
| Ammonia | 0.20 | 0.00250 |
| Ammonia | 0.25 | -0.01400 |
| Ammonia | 0.30 | -0.02500 |
| Leucine | 0.05 | 0.02600 |
| Leucine | 0.10 | 0.03000 |
| Leucine | 0.15 | 0.01000 |
| Leucine | 0.20 | 0.00210 |
| Leucine | 0.25 | -0.01000 |
| Leucine | 0.30 | -0.02400 |
| Phosphate | 0.05 | 0.02400 |
| Phosphate | 0.10 | 0.00710 |
| Phosphate | 0.15 | -0.00089 |
| Phosphate | 0.20 | -0.00400 |
| Phosphate | 0.25 | -0.01600 |
| Phosphate | 0.30 | -0.02300 |
| Sulfate | 0.05 | 0.02000 |
| Sulfate | 0.10 | 0.00720 |
| Sulfate | 0.15 | -0.01200 |
| Sulfate | 0.20 | -0.01100 |
| Sulfate | 0.25 | -0.00920 |
| Sulfate | 0.30 | -0.01800 |
| Uracil | 0.05 | 0.02300 |
| Uracil | 0.10 | 0.02300 |
| Uracil | 0.15 | 0.01100 |
| Uracil | 0.20 | 0.00240 |
| Uracil | 0.25 | -0.03000 |
| Uracil | 0.30 | -0.03700 |
gm <- read_csv("data/gapminder.csv")
ggplot(gm, aes(gdpPercap, lifeExp)) + geom_point() + scale_x_log10() +
ggtitle("Life Expectancy vs GDP per capita") +
theme_bw() +
geom_smooth(se=FALSE, lwd=2)