Let’s take mtcars dataset from datasets package

library(ggplot2)

library(broom)

library(dplyr)

# Build a simple linear model between hp and mpg

m1<-lm(hp~mpg,data=mtcars)

# Predict new mpg given values below 

new_mpg = data.frame(mpg=c(23,21,30,28))

new_hp<- augment(m1,newdata=new_mpg)

new_hp1<- new_hp %>% select(mpg,.fitted) %>% mutate(type1="predicted")

new_mtcars<- mtcars %>% select(mpg,hp) %>% mutate(type1="observed") %>% bind_rows(new_hp1)

tail(new_mtcars)

# plot new predicted values in the graph along with original mpg values

ggplot(data=new_mtcars,aes(x=mpg,y=hp)) + geom_point(aes(color=factor(type1))) + geom_smooth(method="lm",col=4,se=F) + 
  geom_point(data=new_mtcars,aes(y=.fitted),color="green")+scale_color_manual(name="Type",values=c("purple","green"))
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoqIEFkZGluZyBgbGVnZW5kYCB0byBwbG90cyB1c2luZyBgZ2dwbG90MmAgcGFja2FnZQ0KDQogTGV0J3MgdGFrZSBgbXRjYXJzYCBkYXRhc2V0IGZyb20gYGRhdGFzZXRzYCBwYWNrYWdlDQogDQogDQpgYGB7cn0NCiMgc2V0IHJvd3MgYXMgbmFtZSB1c2luZyBgdGliYmxlYCBwYWNrYWdlDQoNCmxpYnJhcnkodGliYmxlKQ0KDQpkYXRhc2V0PC1yb3duYW1lc190b19jb2x1bW4obXRjYXJzLHZhcj0iQnJhbmQiKQ0KDQpoZWFkKGRhdGFzZXQpDQoNCmBgYA0KDQoqIFBsb3R0aW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBocCBhbmQgbXBnDQoNCmBgYHtyIGluY2x1ZGU9VFJVRX0NCmxpYnJhcnkoZ2dwbG90MikNCg0KbGlicmFyeShicm9vbSkNCg0KbGlicmFyeShkcGx5cikNCg0KIyBCdWlsZCBhIHNpbXBsZSBsaW5lYXIgbW9kZWwgYmV0d2VlbiBocCBhbmQgbXBnDQoNCm0xPC1sbShocH5tcGcsZGF0YT1tdGNhcnMpDQoNCiMgUHJlZGljdCBuZXcgbXBnIGdpdmVuIHZhbHVlcyBiZWxvdyANCg0KbmV3X21wZyA9IGRhdGEuZnJhbWUobXBnPWMoMjMsMjEsMzAsMjgpKQ0KDQpuZXdfaHA8LSBhdWdtZW50KG0xLG5ld2RhdGE9bmV3X21wZykNCg0KbmV3X2hwMTwtIG5ld19ocCAlPiUgc2VsZWN0KG1wZywuZml0dGVkKSAlPiUgbXV0YXRlKHR5cGUxPSJwcmVkaWN0ZWQiKQ0KDQpuZXdfbXRjYXJzPC0gbXRjYXJzICU+JSBzZWxlY3QobXBnLGhwKSAlPiUgbXV0YXRlKHR5cGUxPSJvYnNlcnZlZCIpICU+JSBiaW5kX3Jvd3MobmV3X2hwMSkNCg0KdGFpbChuZXdfbXRjYXJzKQ0KDQojIHBsb3QgbmV3IHByZWRpY3RlZCB2YWx1ZXMgaW4gdGhlIGdyYXBoIGFsb25nIHdpdGggb3JpZ2luYWwgbXBnIHZhbHVlcw0KDQpnZ3Bsb3QoZGF0YT1uZXdfbXRjYXJzLGFlcyh4PW1wZyx5PWhwKSkgKyBnZW9tX3BvaW50KGFlcyhjb2xvcj1mYWN0b3IodHlwZTEpKSkgKyBnZW9tX3Ntb290aChtZXRob2Q9ImxtIixjb2w9NCxzZT1GKSArIA0KICBnZW9tX3BvaW50KGRhdGE9bmV3X210Y2FycyxhZXMoeT0uZml0dGVkKSxjb2xvcj0iZ3JlZW4iKStzY2FsZV9jb2xvcl9tYW51YWwobmFtZT0iVHlwZSIsdmFsdWVzPWMoInB1cnBsZSIsImdyZWVuIikpDQpgYGANCg0K