Based on the map above, a Multiple Interval Mapping (MIM) approach was performed to find QTLs, as follows.
write_map(maps_list, "mimulus_onemap.map")
install.packages("qtl")
library("qtl")
raw_file <- paste(system.file("extdata", package = "onemap"),"m_feb06.raw", sep = "/")
f2_qtlmimulus <- read.cross("mm", file = raw_file, mapfile = "mimulus_onemap.map")
## --Read the following data:
## Type of cross: f2
## Number of individuals: 287
## Number of markers: 418
## Number of phenotypes: 16
## --Cross type: f2
f2_qtlmimulus
## This is an object of class "cross".
## It is too complex to print, so we provide just this summary.
## F2 intercross
##
## No. individuals: 287
##
## No. phenotypes: 16
## Percent phenotyped: 96.2 93.4 96.2 93 95.8 87.8 96.2 95.8 96.2 96.2
## 90.2 96.2 95.8 96.2 95.8 96.2
##
## No. chromosomes: 14
## Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
##
## Total markers: 390
## No. markers: 20 22 26 35 21 46 32 26 25 21 35 24 19 38
## Percent genotyped: 89.6
## Genotypes (%): AA:16.4 AB:24.8 BB:22.4 not BB:19.3 not AA:17.1
plotMap(f2_qtlmimulus,main=substitute(paste("Genetic linkage map - F2 ")(italic('Mimulus guttatus x Mimulus nasutus'))))
plotMissing(f2_qtlmimulus, main="Missing genotypes")
#plot_pheno<-plot.pheno(f2_qtlmimulus, pheno.col=16)
plot(plot_pheno, col="yellow", xlab="Corola width (mm)", main="ww")
mimulus_jm <- jittermap(f2_qtlmimulus, amount=1e-6)
summary(mimulus_jm)
## F2 intercross
##
## No. individuals: 287
##
## No. phenotypes: 16
## Percent phenotyped: 96.2 93.4 96.2 93 95.8 87.8 96.2 95.8 96.2 96.2
## 90.2 96.2 95.8 96.2 95.8 96.2
##
## No. chromosomes: 14
## Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
##
## Total markers: 390
## No. markers: 20 22 26 35 21 46 32 26 25 21 35 24 19 38
## Percent genotyped: 89.6
## Genotypes (%): AA:16.4 AB:24.8 BB:22.4 not BB:19.3 not AA:17.1
mimulus_imp <- sim.geno(mimulus_jm, n.draws=16, step=5, off.end=0, error.prob=0.001, map.function="kosambi")
mimulus_prob <- calc.genoprob(mimulus_imp, step = 5, off.end=0, error.prob=0.001, map.function="kosambi", stepwidth="fixed")
out_mimulus<-scantwo(mimulus_prob, method="hk",pheno.col=16)
## --Running scanone
## --Running scantwo
## (1,1)
## (1,2)
## (1,3)
## (1,4)
## (1,5)
## (1,6)
## (1,7)
## (1,8)
## (1,9)
## (1,10)
## (1,11)
## (1,12)
## (1,13)
## (1,14)
## (2,2)
## (2,3)
## (2,4)
## (2,5)
## (2,6)
## (2,7)
## (2,8)
## (2,9)
## (2,10)
## (2,11)
## (2,12)
## (2,13)
## (2,14)
## (3,3)
## (3,4)
## (3,5)
## (3,6)
## (3,7)
## (3,8)
## (3,9)
## (3,10)
## (3,11)
## (3,12)
## (3,13)
## (3,14)
## (4,4)
## (4,5)
## (4,6)
## (4,7)
## (4,8)
## (4,9)
## (4,10)
## (4,11)
## (4,12)
## (4,13)
## (4,14)
## (5,5)
## (5,6)
## (5,7)
## (5,8)
## (5,9)
## (5,10)
## (5,11)
## (5,12)
## (5,13)
## (5,14)
## (6,6)
## (6,7)
## (6,8)
## (6,9)
## (6,10)
## (6,11)
## (6,12)
## (6,13)
## (6,14)
## (7,7)
## (7,8)
## (7,9)
## (7,10)
## (7,11)
## (7,12)
## (7,13)
## (7,14)
## (8,8)
## (8,9)
## (8,10)
## (8,11)
## (8,12)
## (8,13)
## (8,14)
## (9,9)
## (9,10)
## (9,11)
## (9,12)
## (9,13)
## (9,14)
## (10,10)
## (10,11)
## (10,12)
## (10,13)
## (10,14)
## (11,11)
## (11,12)
## (11,13)
## (11,14)
## (12,12)
## (12,13)
## (12,14)
## (13,13)
## (13,14)
## (14,14)
\[\begin{eqnarray*}
Null~model: y &=& \mu + \epsilon\\
Single~model: y &=& \mu + \beta_1q_1 + \epsilon \\
Additive~model: y &=& \mu + \beta_1q_1 + \beta_2q_2 + \epsilon\\
Full~model: y &=& \mu + \beta_1q_1 + \beta_2q_2 + \gamma(q_1 \times q_2) + \epsilon \\
\end{eqnarray*}\]
Table 1. LOD Score for the different models computed by scantwo.
table1<-data.frame(summary(out_mimulus))
knitr::kable(table1)
| chr1 | chr2 | pos1f | pos2f | lod.full | lod.fv1 | lod.int | pos1a | pos2a | lod.add | lod.av1 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 80 | 6.372948 | 4.758527 | 3.7565362 | 0 | 50 | 2.6164112 | 1.0019910 |
| 1 | 2 | 95 | 55 | 8.041204 | 5.234967 | 3.8243210 | 75 | 45 | 4.2168828 | 1.4106456 |
| 1 | 3 | 75 | 95 | 8.294515 | 2.956925 | 1.6134148 | 55 | 95 | 6.6811004 | 1.3435103 |
| 1 | 4 | 65 | 110 | 5.055449 | 3.441029 | 1.7448630 | 55 | 210 | 3.3105862 | 1.6961660 |
| 1 | 5 | 130 | 20 | 4.022394 | 2.303933 | 0.7208028 | 75 | 10 | 3.3015917 | 1.5831307 |
| 1 | 6 | 130 | 5 | 5.539968 | 3.466080 | 1.9653507 | 55 | 35 | 3.5746171 | 1.5007291 |
| 1 | 7 | 50 | 160 | 6.743030 | 4.952041 | 3.0941551 | 55 | 160 | 3.6488751 | 1.8578856 |
| 1 | 8 | 55 | 90 | 4.660548 | 2.970651 | 1.0745116 | 55 | 90 | 3.5860369 | 1.8961390 |
| 1 | 9 | 200 | 40 | 4.948535 | 3.334115 | 2.9475765 | 55 | 35 | 2.0009583 | 0.3865381 |
| 1 | 10 | 95 | 135 | 4.283378 | 2.668958 | 1.5498400 | 55 | 135 | 2.7335384 | 1.1191182 |
| 1 | 11 | 110 | 165 | 6.387967 | 3.803961 | 2.5790576 | 55 | 160 | 3.8089097 | 1.2249035 |
| 1 | 12 | 120 | 25 | 5.682905 | 3.131572 | 1.5885686 | 60 | 60 | 4.0943367 | 1.5430035 |
| 1 | 13 | 55 | 115 | 4.868310 | 3.253890 | 2.7250139 | 55 | 95 | 2.1432963 | 0.5288761 |
| 1 | 14 | 115 | 115 | 11.615999 | 2.931903 | 1.2453314 | 60 | 115 | 10.3706672 | 1.6865720 |
| 2 | 2 | 25 | 145 | 7.733876 | 4.927639 | 3.8935532 | 45 | 130 | 3.8403231 | 1.0340859 |
| 2 | 3 | 50 | 95 | 8.287569 | 2.949979 | 0.4363755 | 50 | 95 | 7.8511939 | 2.5136038 |
| 2 | 4 | 105 | 215 | 8.572155 | 5.765918 | 4.0561284 | 50 | 210 | 4.5160266 | 1.7097894 |
| 2 | 5 | 120 | 85 | 7.540593 | 4.734356 | 2.8012993 | 50 | 90 | 4.7392938 | 1.9330566 |
| 2 | 6 | 165 | 200 | 6.637810 | 3.831573 | 1.8854373 | 50 | 15 | 4.7523727 | 1.9461356 |
| 2 | 7 | 130 | 5 | 5.714344 | 2.908106 | 0.9144877 | 50 | 165 | 4.7998559 | 1.9936187 |
| 2 | 8 | 125 | 90 | 6.512794 | 3.706557 | 2.4124695 | 50 | 90 | 4.1003242 | 1.2940870 |
| 2 | 9 | 45 | 70 | 6.348585 | 3.542348 | 3.1438642 | 50 | 40 | 3.2047207 | 0.3984835 |
| 2 | 10 | 40 | 100 | 6.070199 | 3.263962 | 2.3682145 | 50 | 135 | 3.7019848 | 0.8957477 |
| 2 | 11 | 45 | 155 | 8.040431 | 5.234194 | 2.3070262 | 50 | 160 | 5.7334046 | 2.9271674 |
| 2 | 12 | 130 | 60 | 7.245271 | 4.439033 | 1.8207699 | 50 | 60 | 5.4245007 | 2.6182635 |
| 2 | 13 | 0 | 60 | 4.833760 | 2.027522 | 1.5680322 | 50 | 125 | 3.2657274 | 0.4594902 |
| 2 | 14 | 40 | 115 | 11.557198 | 2.873103 | 0.2425833 | 130 | 115 | 11.3146145 | 2.6305194 |
| 3 | 3 | 30 | 125 | 7.601371 | 2.263781 | 1.3497598 | 80 | 105 | 6.2516108 | 0.9140207 |
| 3 | 4 | 90 | 100 | 8.250135 | 2.912545 | 1.4216918 | 95 | 100 | 6.8284436 | 1.4908534 |
| 3 | 5 | 90 | 95 | 8.737789 | 3.400199 | 1.8775325 | 95 | 10 | 6.8602569 | 1.5226667 |
| 3 | 6 | 95 | 140 | 7.919827 | 2.582237 | 1.4272034 | 95 | 10 | 6.4926235 | 1.1550334 |
| 3 | 7 | 95 | 160 | 7.197555 | 1.859965 | 0.5433560 | 95 | 160 | 6.6541993 | 1.3166092 |
| 3 | 8 | 95 | 0 | 7.663357 | 2.325767 | 0.9339274 | 95 | 90 | 6.7294298 | 1.3918397 |
| 3 | 9 | 95 | 200 | 7.776473 | 2.438883 | 1.8656412 | 95 | 0 | 5.9108318 | 0.5732417 |
| 3 | 10 | 90 | 90 | 8.141953 | 2.804363 | 1.5481610 | 95 | 100 | 6.5937922 | 1.2562020 |
| 3 | 11 | 90 | 110 | 8.286557 | 2.948967 | 0.7765364 | 95 | 160 | 7.5100205 | 2.1724303 |
| 3 | 12 | 95 | 65 | 9.425791 | 4.088201 | 0.9724884 | 95 | 60 | 8.4533025 | 3.1157123 |
| 3 | 13 | 90 | 60 | 6.806138 | 1.468548 | 1.0784343 | 95 | 125 | 5.7277037 | 0.3901135 |
| 3 | 14 | 80 | 110 | 14.294756 | 5.610661 | 2.1870317 | 85 | 115 | 12.1077247 | 3.4236295 |
| 4 | 4 | 210 | 240 | 5.902542 | 4.403230 | 3.5503288 | 210 | 240 | 2.3522132 | 0.8529010 |
| 4 | 5 | 180 | 85 | 7.599464 | 5.881003 | 4.2297546 | 210 | 15 | 3.3697093 | 1.6512483 |
| 4 | 6 | 105 | 10 | 4.754702 | 2.680814 | 1.1460697 | 210 | 35 | 3.6086317 | 1.5347438 |
| 4 | 7 | 75 | 255 | 4.644989 | 2.854000 | 1.5052802 | 210 | 160 | 3.1397089 | 1.3487194 |
| 4 | 8 | 160 | 20 | 4.270310 | 2.580412 | 1.2371491 | 210 | 90 | 3.0331608 | 1.3432628 |
| 4 | 9 | 100 | 185 | 5.239545 | 3.740233 | 3.2476863 | 210 | 160 | 1.9918590 | 0.4925467 |
| 4 | 10 | 210 | 170 | 5.894919 | 4.395607 | 3.0883345 | 210 | 135 | 2.8065847 | 1.3072725 |
| 4 | 11 | 100 | 20 | 6.032876 | 3.448870 | 2.0117977 | 210 | 165 | 4.0210787 | 1.4370725 |
| 4 | 12 | 215 | 70 | 7.192099 | 4.640766 | 2.9017055 | 210 | 70 | 4.2903939 | 1.7390607 |
| 4 | 13 | 95 | 40 | 4.401435 | 2.902123 | 2.3038380 | 210 | 125 | 2.0975969 | 0.5982847 |
| 4 | 14 | 210 | 115 | 11.817464 | 3.133369 | 1.5829835 | 210 | 115 | 10.2344802 | 1.5503851 |
| 5 | 5 | 15 | 90 | 4.110225 | 2.391764 | 0.4070998 | 15 | 90 | 3.7031250 | 1.9846640 |
| 5 | 6 | 65 | 35 | 5.219583 | 3.145695 | 1.6689851 | 90 | 35 | 3.5505980 | 1.4767100 |
| 5 | 7 | 90 | 250 | 5.616746 | 3.825756 | 2.1595630 | 10 | 160 | 3.4571825 | 1.6661930 |
| 5 | 8 | 5 | 90 | 6.622033 | 4.903572 | 2.7367469 | 10 | 90 | 3.8852862 | 2.1668251 |
| 5 | 9 | 150 | 150 | 5.796962 | 4.078500 | 3.7137957 | 10 | 140 | 2.0831658 | 0.3647048 |
| 5 | 10 | 95 | 160 | 3.838016 | 2.119555 | 0.8017632 | 10 | 135 | 3.0362527 | 1.3177917 |
| 5 | 11 | 85 | 100 | 5.464854 | 2.880848 | 1.1947614 | 10 | 160 | 4.2700930 | 1.6860868 |
| 5 | 12 | 90 | 70 | 5.916983 | 3.365650 | 1.3010801 | 90 | 60 | 4.6159033 | 2.0645701 |
| 5 | 13 | 90 | 105 | 3.755044 | 2.036583 | 1.6169280 | 10 | 0 | 2.1381160 | 0.4196549 |
| 5 | 14 | 90 | 115 | 10.791956 | 2.107861 | 0.9221243 | 90 | 115 | 9.8698317 | 1.1857366 |
| 6 | 6 | 15 | 30 | 5.512620 | 3.438732 | 2.4347159 | 35 | 235 | 3.0779041 | 1.0040162 |
| 6 | 7 | 35 | 165 | 6.415779 | 4.341891 | 2.2808855 | 35 | 160 | 4.1348934 | 2.0610054 |
| 6 | 8 | 35 | 180 | 5.808816 | 3.734928 | 2.1127675 | 35 | 90 | 3.6960484 | 1.6221604 |
| 6 | 9 | 85 | 35 | 3.850889 | 1.777001 | 1.2287430 | 15 | 0 | 2.6221464 | 0.5482584 |
| 6 | 10 | 5 | 140 | 6.546841 | 4.472953 | 3.1362517 | 35 | 135 | 3.4105894 | 1.3367014 |
| 6 | 11 | 35 | 100 | 5.884164 | 3.300158 | 1.3586980 | 10 | 160 | 4.5254659 | 1.9414597 |
| 6 | 12 | 0 | 60 | 5.659294 | 3.107960 | 1.0199801 | 35 | 60 | 4.6393136 | 2.0879804 |
| 6 | 13 | 30 | 110 | 4.057324 | 1.983436 | 1.3846947 | 35 | 125 | 2.6726298 | 0.5987418 |
| 6 | 14 | 90 | 115 | 11.211627 | 2.527532 | 1.1881122 | 35 | 115 | 10.0235147 | 1.3394195 |
| 7 | 7 | 95 | 165 | 5.028742 | 3.237753 | 1.9986793 | 165 | 170 | 3.0300631 | 1.2390736 |
| 7 | 8 | 250 | 90 | 6.246422 | 4.455433 | 2.6228682 | 160 | 90 | 3.6235539 | 1.8325644 |
| 7 | 9 | 165 | 90 | 5.256483 | 3.465494 | 3.0452589 | 165 | 115 | 2.2112246 | 0.4202351 |
| 7 | 10 | 160 | 135 | 5.377868 | 3.586879 | 2.3278078 | 165 | 100 | 3.0500602 | 1.2590707 |
| 7 | 11 | 160 | 160 | 7.378591 | 4.794585 | 2.9447981 | 165 | 160 | 4.4337927 | 1.8497865 |
| 7 | 12 | 210 | 70 | 6.687595 | 4.136262 | 2.7099330 | 160 | 60 | 3.9776620 | 1.4263288 |
| 7 | 13 | 245 | 35 | 4.129385 | 2.338395 | 1.7102354 | 165 | 125 | 2.4191492 | 0.6281597 |
| 7 | 14 | 85 | 115 | 12.355961 | 3.671866 | 2.1809299 | 160 | 115 | 10.1750310 | 1.4909359 |
| 8 | 8 | 90 | 120 | 4.721621 | 3.031723 | 1.4677660 | 90 | 105 | 3.2538545 | 1.5639565 |
| 8 | 9 | 65 | 150 | 4.141355 | 2.451457 | 2.0028699 | 90 | 0 | 2.1384849 | 0.4485870 |
| 8 | 10 | 95 | 40 | 3.743129 | 2.053231 | 0.8265317 | 90 | 135 | 2.9165969 | 1.2266989 |
| 8 | 11 | 95 | 200 | 7.679905 | 5.095899 | 3.8201808 | 90 | 160 | 3.8597246 | 1.2757184 |
| 8 | 12 | 95 | 60 | 7.216253 | 4.664920 | 3.1647851 | 90 | 60 | 4.0514677 | 1.5001345 |
| 8 | 13 | 95 | 120 | 6.450437 | 4.760539 | 3.9014381 | 90 | 125 | 2.5489986 | 0.8591006 |
| 8 | 14 | 90 | 115 | 10.939623 | 2.255528 | 0.7228954 | 90 | 115 | 10.2167277 | 1.5326325 |
| 9 | 9 | 5 | 40 | 3.433901 | 3.068338 | 1.9373418 | 5 | 35 | 1.4965593 | 1.1309965 |
| 9 | 10 | 35 | 135 | 4.749769 | 3.428203 | 3.0905171 | 40 | 135 | 1.6592514 | 0.3376861 |
| 9 | 11 | 235 | 90 | 5.306706 | 2.722700 | 2.2801645 | 35 | 160 | 3.0265415 | 0.4425353 |
| 9 | 12 | 185 | 60 | 5.103604 | 2.552271 | 2.2840969 | 40 | 60 | 2.8195072 | 0.2681740 |
| 9 | 13 | 145 | 60 | 4.734535 | 4.176722 | 3.7490690 | 140 | 125 | 0.9854659 | 0.4276528 |
| 9 | 14 | 65 | 115 | 10.291511 | 1.607416 | 1.1001934 | 140 | 115 | 9.1913177 | 0.5072226 |
| 10 | 10 | 110 | 135 | 4.813339 | 3.491774 | 1.2807118 | 120 | 130 | 3.5326275 | 2.2110622 |
| 10 | 11 | 160 | 205 | 5.733353 | 3.149347 | 2.0178333 | 135 | 160 | 3.7155194 | 1.1315132 |
| 10 | 12 | 0 | 90 | 5.012301 | 2.460968 | 1.3209884 | 135 | 60 | 3.6913129 | 1.1399796 |
| 10 | 13 | 105 | 125 | 4.299812 | 2.978247 | 2.2321502 | 135 | 125 | 2.0676622 | 0.7460969 |
| 10 | 14 | 135 | 115 | 13.065347 | 4.381252 | 2.8632751 | 135 | 115 | 10.2020720 | 1.5179769 |
| 11 | 11 | 140 | 160 | 6.758760 | 4.174754 | 2.6723989 | 100 | 195 | 4.0863613 | 1.5023551 |
| 11 | 12 | 165 | 60 | 6.148026 | 3.564020 | 1.3353766 | 160 | 60 | 4.8126498 | 2.2286436 |
| 11 | 13 | 260 | 120 | 5.398040 | 2.814034 | 2.3479120 | 160 | 125 | 3.0501281 | 0.4661219 |
| 11 | 14 | 30 | 115 | 12.620094 | 3.935999 | 2.5190260 | 100 | 115 | 10.1010681 | 1.4169730 |
| 12 | 12 | 20 | 50 | 4.783104 | 2.231771 | 1.1592046 | 0 | 70 | 3.6238993 | 1.0725661 |
| 12 | 13 | 50 | 115 | 5.361009 | 2.809676 | 2.1565007 | 60 | 125 | 3.2045089 | 0.6531756 |
| 12 | 14 | 100 | 115 | 12.801869 | 4.117774 | 1.9503750 | 60 | 115 | 10.8514938 | 2.1673987 |
| 13 | 13 | 85 | 95 | 3.917918 | 3.360105 | 1.8067348 | 95 | 105 | 2.1111832 | 1.5533701 |
| 13 | 14 | 125 | 115 | 9.910744 | 1.226649 | 0.5107573 | 125 | 115 | 9.3999869 | 0.7158918 |
| 14 | 14 | 115 | 255 | 10.692260 | 2.008165 | 0.6015512 | 60 | 115 | 10.0907090 | 1.4066138 |
plot(out_mimulus,col.scheme = "redblue")
plot(out_mimulus, lower="fv1",col.scheme = "redblue")
out_mimulus_perm<-scantwo(mimulus_prob, method="hk", n.perm=1000, verbose=T,pheno.col=16)
## Doing permutation in batch mode ...
threshold <- summary(out_mimulus_perm)
summary(out_mimulus_perm,alpha=0.10)
## (1000 permutations)
## full fv1 int add av1 one
## 10% 8.82 6.74 5.71 6 3.23 3.32
old.par <- par(mfrow=c(3, 2))
freq_perm_full<-hist(out_mimulus_perm$full, col="blue", main="full")
abline(freq_perm_full, v=threshold$full[1,1], col="red", lty=3, lwd=3)
freq_perm_fv1<-hist(out_mimulus_perm$fv1, col="yellow", main="fv1")
abline(freq_perm_fv1, v=threshold$fv1[1,1], col="red", lty=3, lwd=3)
freq_perm_add<-hist(out_mimulus_perm$add, col="pink", main="add")
abline(freq_perm_add, v=threshold$add[1,1], col="red", lty=3, lwd=3)
freq_perm_av1<-hist(out_mimulus_perm$av1, col="green", main="av1")
abline(freq_perm_av1, v=threshold$av1[1,1], col="red", lty=3, lwd=3)
freq_perm_one<-hist(out_mimulus_perm$one, col="orange", main="one")
abline(freq_perm_one, v=threshold$one[1,1], col="red", lty=3, lwd=3)
par(old.par)
summary_qtl1<- summary(out_mimulus,perms=out_mimulus_perm, alpha=c(0.1), pvalues = T)
summary_qtl1
## pos1f pos2f lod.full pval lod.fv1 pval lod.int pval pos1a
## c3:c14 80 110 14.3 0 5.61 0.616 2.19 1 85
## pos2a lod.add pval lod.av1 pval
## c3:c14 115 12.1 0 3.42 0.055
summary(out_mimulus_perm,alpha=0.10)
## (1000 permutations)
## full fv1 int add av1 one
## 10% 8.82 6.74 5.71 6 3.23 3.32
Maximum Likelihood
\[\begin{eqnarray*}
M_f (s, t) &=& LOD_{f.max} (s, t)\\
M_{fv1} (s, t) &=& LOD_{f.max} (s, t) - LOD_{1.max} (s)\\
M_i (s, t) &=& LOD_{f.max} (s, t) - LOD_{a.max} (s, t)\\
M_a (s, t) &=& LOD_{a.max} (s, t)\\
M_{av1} (s, t) &=& LOD_{a.max} (s, t) - LOD_{1.max} (s)
\end{eqnarray*}\]
Criteria for printing chromosome pair
Table 2. LOD Score and p value for the interaction between C3 and C14 (envolving full model)
| Linkage.Group1 | Linkage.Group2 | Position1 | Position2 | LOD.full | p.value.full | LOD.fv1 | p.value.fv1 | LOD.int | p.value.LOD.int |
|---|---|---|---|---|---|---|---|---|---|
| 3 | 14 | 80 | 110 | 14.29476 | 0 | 5.610661 | 0.616 | 2.187032 | 1 |
Table 3. LOD Score and p-value for the interaction between linkage groups 3 and 14, considering additive models.
| Linkage.Group1 | Linkage.Group2 | Position1 | Position2 | LOD.add | pvalue.add | LOD.av1 | pvalue.av1 |
|---|---|---|---|---|---|---|---|
| 3 | 14 | 85 | 115 | 12.10772 | 0 | 3.42363 | 0.055 |
qtl_mim <- makeqtl(mimulus_prob, chr=c(3,14), pos=c(85,112), what="prob")
plot(qtl_mim)
out_fit1 <- fitqtl(mimulus_prob, pheno.col=16, qtl=qtl_mim, method="hk", get.ests=TRUE)
summary(out_fit1)
##
## fitqtl summary
##
## Method: Haley-Knott regression
## Model: normal phenotype
## Number of observations : 276
##
## Full model result
## ----------------------------------
## Model formula: y ~ Q1 + Q2
##
## df SS MS LOD %var Pvalue(Chi2) Pvalue(F)
## Model 4 577.2031 144.300770 12.63863 19.01292 6.917689e-12 1.041989e-11
## Error 271 2458.6439 9.072487
## Total 275 3035.8469
##
##
## Drop one QTL at a time ANOVA table:
## ----------------------------------
## df Type III SS LOD %var F value Pvalue(Chi2) Pvalue(F)
## 3@85.0 2 150.8 3.567 4.966 8.309 0 0.000315 ***
## 14@112.3 2 364.1 8.277 11.994 20.068 0 7.46e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Estimated effects:
## -----------------
## est SE t
## Intercept 15.7592 0.1850 85.203
## 3@85.0a 1.1395 0.2796 4.076
## 3@85.0d -0.5221 0.4377 -1.193
## 14@112.3a 1.7384 0.2744 6.334
## 14@112.3d 0.1517 0.3675 0.413
pen <- calc.penalties(out_mimulus_perm, alpha = 0.1)
summary(out_mimulus_perm)
## ww (1000 permutations)
## full fv1 int add av1 one
## 5% 9.12 7.08 6.10 6.44 3.44 3.71
## 10% 8.82 6.74 5.71 6.00 3.23 3.32
print(pen)
## main heavy light
## 3.320801 5.714057 3.422012
out_stp <- stepwiseqtl(mimulus_prob,pheno.col=16, penalties = pen, max.qtl=4, method="hk", verbose=T, refine.locations = TRUE)
## -Initial scan
## initial lod: 9.071802
## ** new best ** (pLOD increased by 5.751)
## no.qtl = 1 pLOD = 5.751001 formula: y ~ Q1
## -Step 1
## ---Scanning for additive qtl
## plod = 5.997023
## ---Scanning for QTL interacting with Q1
## plod = 5.257624
## ---Refining positions
## no.qtl = 2 pLOD = 5.997023 formula: y ~ Q1 + Q2
## ** new best ** (pLOD increased by 0.246)
## -Step 2
## ---Scanning for additive qtl
## plod = 5.535213
## ---Scanning for QTL interacting with Q1
## plod = 3.91849
## ---Scanning for QTL interacting with Q2
## plod = 4.571991
## ---Look for additional interactions
## plod = 5.029571
## ---Refining positions
## no.qtl = 3 pLOD = 5.535213 formula: y ~ Q1 + Q2 + Q3
## -Step 3
## ---Scanning for additive qtl
## plod = 4.60837
## ---Scanning for QTL interacting with Q1
## plod = 3.617351
## ---Scanning for QTL interacting with Q2
## plod = 2.683523
## ---Scanning for QTL interacting with Q3
## plod = 3.432879
## ---Look for additional interactions
## plod = 4.246929
## ---Refining positions
## no.qtl = 4 pLOD = 4.60837 formula: y ~ Q1 + Q2 + Q3 + Q4
## -Starting backward deletion
## ---Dropping Q4
## no.qtl = 3 pLOD = 5.535213 formula: y ~ Q1 + Q2 + Q3
## ---Refining positions
## ---Dropping Q3
## no.qtl = 2 pLOD = 5.997023 formula: y ~ Q1 + Q2
## ---Refining positions
## ---Dropping Q2
## no.qtl = 1 pLOD = 5.751001 formula: y ~ Q1
## ---Refining positions
## ---One last pass through refineqtl
out_stp
## QTL object containing genotype probabilities.
##
## name chr pos n.gen
## Q1 3@85.0 3 85.00 3
## Q2 14@112.3 14 112.33 3
##
## Formula: y ~ Q1 + Q2
##
## pLOD: 5.997
ref<-refineqtl(mimulus_prob,pheno.col=16,qtl_mim,chr=c(3,14),pos = c(80,110))
## pos: 85 112.3271
## Iteration 1
## Q2 pos: 112.3271 -> 112.3271
## LOD increase: 0
## Q1 pos: 85 -> 85
## LOD increase: 0
## all pos: 85 112.3271 -> 85 112.3271
## LOD increase at this iteration: 0
## overall pos: 85 112.3271 -> 85 112.3271
## LOD increase overall: 0
ref
## QTL object containing genotype probabilities.
##
## name chr pos n.gen
## Q1 3@85.0 3 85.00 3
## Q2 14@112.3 14 112.33 3
plotLodProfile(ref)
lodint(out_stp, chr = 3, qtl.index = 1)
## chr pos lod
## c3.loc20 3 20 1.895579
## c3.loc85 3 85 3.566824
## c3.loc140 3 140 1.884630
lodint(out_stp, chr = 14, qtl.index = 2)
## chr pos lod
## BC498 14 108.3305 6.031331
## AAT374 14 112.3271 8.277387
## MgSTS388 14 117.0479 6.705145
out_fit_f <- fitqtl(mimulus_prob, pheno.col=16, qtl=ref, method="hk", get.ests=TRUE)
summary(out_fit_f)
##
## fitqtl summary
##
## Method: Haley-Knott regression
## Model: normal phenotype
## Number of observations : 276
##
## Full model result
## ----------------------------------
## Model formula: y ~ Q1 + Q2
##
## df SS MS LOD %var Pvalue(Chi2) Pvalue(F)
## Model 4 577.2031 144.300770 12.63863 19.01292 6.917689e-12 1.041989e-11
## Error 271 2458.6439 9.072487
## Total 275 3035.8469
##
##
## Drop one QTL at a time ANOVA table:
## ----------------------------------
## df Type III SS LOD %var F value Pvalue(Chi2) Pvalue(F)
## 3@85.0 2 150.8 3.567 4.966 8.309 0 0.000315 ***
## 14@112.3 2 364.1 8.277 11.994 20.068 0 7.46e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Estimated effects:
## -----------------
## est SE t
## Intercept 15.7592 0.1850 85.203
## 3@85.0a 1.1395 0.2796 4.076
## 3@85.0d -0.5221 0.4377 -1.193
## 14@112.3a 1.7384 0.2744 6.334
## 14@112.3d 0.1517 0.3675 0.413
Table 4. Linkage Group, position, LOD score, QTLs effects (additive and dominant) and determination coefficient (%) for the Multiple Interval Mapping (CIM) for the phenotype corolla width, using the Haley-Knott regression.
| QTL | Linkage.Group | Position | LOD | Additive.effect | Dominance.effect | R2 | |
|---|---|---|---|---|---|---|---|
| 3@85.0a | Q1 | 3 | 85.0000 | 3.5668 | 1.1395 | -0.5221 | 4.9662 |
| 14@112.3a | Q2 | 14 | 112.3271 | 8.2774 | 1.7384 | 0.1517 | 11.9945 |
A Composite Interval Mapping was performed in the same data set, as detailed in this page and in this vÃdeo
knitr::include_graphics('./mapchart/cimemim.png')
knitr::include_graphics('./mapchart/3e14im.png')
knitr::include_graphics('./mapchart/cim.png')
plotLodProfile(ref)