Synopsis

This project is to analyse the natural disaster effect on human population and economic growth from data obtained from U.S. National Oceanic and Atmospheric Administration’s(NOAA) storm database. The database tracks and records data of major storm and weather events across the United States. Analysis of the effect of this natural disaster on human population and economic growth is performed with estimates like fatalities, injuries, property damage, crop damage.

Data reading

Load required libraries

# Load the libraries required to perform the analysis
library(ggplot2)
library(gridExtra)

Reading the data

Download the data to your working directory. Load the data into dataframe weatherdata

# Read data if it is not already read. Use cache=TRUE while starting this

weatherdata <- read.csv("repdata%2Fdata%2FStormData.csv.bz2", sep = ",")

Summary of the data

To get a quick synopsis of the avaliable data.

summary(weatherdata)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   568   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588295

Data processing

The data is optimized for the analysis. The estimates required for the analysis is filtered into the dataframe stormdata

Stormdata <- weatherdata[,c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "CROPDMG")]

The top ten major natural disaster which causes these estimates fatalities, injuries, property damage and crop damage are filtered for the analysis.

fatalitiesdata <- aggregate(Stormdata$FATALITIES, by = list(Stormdata$EVTYPE),
                            FUN = sum, na.rm = TRUE)
colnames(fatalitiesdata) <- c("Event Type", "Fatality")

fatalitiesdata <- fatalitiesdata[order(-fatalitiesdata$Fatality),]

topfatalitiesdata <- fatalitiesdata[1:10,]

topfatalitiesdata$`Event Type` <- factor(topfatalitiesdata$`Event Type`, 
                                         levels = topfatalitiesdata$`Event Type`,
                                         ordered = TRUE)
injurydata <- aggregate(Stormdata$INJURIES, by = list(Stormdata$EVTYPE), 
                        FUN = sum, na.rm = TRUE)

colnames(injurydata) <- c("Event Type", "Injury")

injurydata <- injurydata[order(-injurydata$Injury),]

topinjurydata <- injurydata[1:10, ]

topinjurydata$`Event Type` <- factor(topinjurydata$`Event Type`, 
                                     levels = topinjurydata$`Event Type`, 
                                     ordered = TRUE)
propdata <- aggregate(Stormdata$PROPDMG, by = list(Stormdata$EVTYPE), 
                        FUN = sum, na.rm = TRUE)

colnames(propdata) <- c("Event Type", "Property Damage")

propdata <- propdata[order(-propdata$`Property Damage`),]

toppropdata <- propdata[1:10, ]

toppropdata$`Event Type` <- factor(toppropdata$`Event Type`, 
                                   levels = toppropdata$`Event Type`, 
                                   ordered = TRUE)
cropdata <- aggregate(Stormdata$CROPDMG, by = list(Stormdata$EVTYPE), 
                      FUN = sum, na.rm = TRUE)

colnames(cropdata) <- c("Event Type", "Crop Damage")

cropdata <- cropdata[order(-cropdata$`Crop Damage`),]

topcropdata <- cropdata[1:10, ]

topcropdata$`Event Type` <- factor(topcropdata$`Event Type`, 
                                   levels = topcropdata$`Event Type`, 
                                   ordered = TRUE)

Result

The data is analysed using data visualization. Estimates are plotted using the ggplot2 library.

ggplot(data = topfatalitiesdata, aes(x = `Event Type`, y = Fatality, fill = `Event Type`)) + 
    geom_bar(stat = "identity") +
    xlab("Event Type") + ylab("Total Fatalities")+
    ggtitle("Fatalities by event type")+
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

ggplot(data = topinjurydata, aes(x = `Event Type`, y = Injury, fill = `Event Type`)) + 
    geom_bar(stat = "identity") +
    xlab("Event Type") + ylab("Total Injury")+
    ggtitle("Injury by event type")+
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

We can analyze that tornado is the major cause of fatalities and injuries affecting the human population.

propplot <- ggplot(data = toppropdata, aes(x = `Event Type`, y = `Property Damage`, fill = `Event Type`)) + 
    geom_bar(stat = "identity", show.legend = F) +
    xlab("Event Type") + ylab("Total Property Damage")+
    ggtitle("Property Damage by event type")+
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

cropplot <- ggplot(data = topcropdata, aes(x = `Event Type`, y = `Crop Damage`, fill = `Event Type`)) + 
    geom_bar(stat = "identity", show.legend = F) +
    xlab("Event Type") + ylab("Total Crop Damage")+
    ggtitle("Crop Damage by event type")+
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

grid.arrange(propplot, cropplot, ncol = 2)

When we analyse the property damage and crop damage estimate plots we see that tornado and hail are responsible for affecting the economic growth and human population.

The above analysis will help the government to prepare and allocate funds to tackle the effect of these natural disaster on the human population and economic growth.