library(foreign)
## Warning: package 'foreign' was built under R version 3.2.5
tr=read.spss("C:/Users/BINH THANG/Dropbox/R - Learning/trung/SO-LIEU-NGHIEN-CUU-XU-LY-01.6.sav", to.data.frame=T)
## Warning in read.spss("C:/Users/BINH THANG/Dropbox/R - Learning/trung/
## SO-LIEU-NGHIEN-CUU-XU-LY-01.6.sav", : C:/Users/BINH THANG/Dropbox/R -
## Learning/trung/SO-LIEU-NGHIEN-CUU-XU-LY-01.6.sav: Unrecognized record type
## 7, subtype 18 encountered in system file
a=subset(tr, select=c("HOIQUY", "C2", "C4","C7","C8","C10", "C11" , "C12", "C13"  ,  "C14" , "C15",  "C17", "C18", "C19X1", "C19X2", "C19X3", "C19X4","C19X5" , "C19X6" , "B1" , "E1"))

dinh nghiax bien so

library(plyr)
## Warning: package 'plyr' was built under R version 3.2.5
a$HOIQUY <- mapvalues(a$HOIQUY, from = c("DUONG TINH", "AM TINH"), to = c("1", "0"))

a$HOIQUY=as.factor(a$HOIQUY)

a$C2=as.factor(a$C2)
a$C4=as.factor(a$C4)
a$C7=as.factor(a$C7)
a$C8=as.factor(a$C8)
a$C10=as.factor(a$C10)
a$C11=as.factor(a$C11)
a$C12=as.factor(a$C12)
a$C13=as.factor(a$C13)
a$C14=as.factor(a$C14)
a$C15=as.factor(a$C15)

a$C17=as.factor(a$C17)
a$C18=as.factor(a$C18)

a$C19X1=as.factor(a$C19X1)
a$C19X2=as.factor(a$C19X2)
a$C19X3=as.factor(a$C19X3)
a$C19X4=as.factor(a$C19X4)
a$C19X5=as.factor(a$C19X5)
a$C19X6=as.factor(a$C19X6)

a$B1=as.factor(a$B1)
a$E1=as.factor(a$E1)

a$C2=relevel(a$C2, ref='2')
a$C4=relevel(a$C4, ref='2')
a$C7=relevel(a$C7, ref='2')
a$C8=relevel(a$C8, ref='2')
a$C10=relevel(a$C10, ref='2')
a$C11=relevel(a$C11, ref='2')
a$C12=relevel(a$C12, ref='2')
a$C13=relevel(a$C13, ref='2')
a$C14=relevel(a$C14, ref='2')
a$C15=relevel(a$C15, ref='2')

a$C17=relevel(a$C17, ref='2')
a$C18=relevel(a$C18, ref='2')

a$C19X1=relevel(a$C19X1, ref='2')
a$C19X2=relevel(a$C19X2, ref='2')
a$C19X3=relevel(a$C19X3, ref='2')
a$C19X4=relevel(a$C19X4, ref='2')
a$C19X5=relevel(a$C19X5, ref='2')
a$C19X6=relevel(a$C19X6, ref='2')

a$B1=relevel(a$B1, ref='KHONG NHON')
a$E1=as.factor(a$E1)

phuong phap 1: su dung mo hinh BMA dua vao BIC

yvar = a[,1]
xvars = a[,-1]

#install.packages("BMA")
library(BMA)
## Warning: package 'BMA' was built under R version 3.2.5
## Loading required package: survival
## Warning: package 'survival' was built under R version 3.2.5
## Loading required package: leaps
## Warning: package 'leaps' was built under R version 3.2.5
## Loading required package: robustbase
## Warning: package 'robustbase' was built under R version 3.2.5
## 
## Attaching package: 'robustbase'
## The following object is masked from 'package:survival':
## 
##     heart
## Loading required package: inline
## Warning: package 'inline' was built under R version 3.2.5
## Loading required package: rrcov
## Warning: package 'rrcov' was built under R version 3.2.5
## Scalable Robust Estimators with High Breakdown Point (version 1.4-3)
bma.search=bic.glm(xvars, yvar, strict = F,OR=20, glm.family = "binomial")
## Warning in bic.glm.data.frame(xvars, yvar, strict = F, OR = 20, glm.family
## = "binomial"): There were 2 records deleted due to NA's
summary(bma.search)
## 
## Call:
## bic.glm.data.frame(x = xvars, y = yvar, glm.family = "binomial",     strict = F, OR = 20)
## 
## 
##   21  models were selected
##  Best  5  models (cumulative posterior probability =  0.6601 ): 
## 
##            p!=0    EV        SD         model 1     model 2     model 3   
## Intercept  100    -1.447556    0.21882     -1.3573     -1.3768     -1.6493
## C2.x         4.2                                                          
##     .1             0.010487    0.06264       .           .           .    
## C4.x         7.4                                                          
##     .1             0.024620    0.10146       .           .           .    
## C7.x        13.6                                                          
##     .1             0.053149    0.15300       .           .           .    
## C8.x         0.0                                                          
##     .1             0.000000    0.00000       .           .           .    
## C10.x        0.0                                                          
##      .1            0.000000    0.00000       .           .           .    
## C11.x        0.0                                                          
##      .1            0.000000    0.00000       .           .           .    
## C12.x      100.0                                                          
##      .1            0.647483    0.18035      0.6654      0.6673      0.6509
## C13.x        5.1                                                          
##      .1            0.011971    0.06541       .           .           .    
## C14.x        0.0                                                          
##      .1            0.000000    0.00000       .           .           .    
## C15.x        3.9                                                          
##      .1            0.009282    0.05850       .           .           .    
## C17.x        0.0                                                          
##      .1            0.000000    0.00000       .           .           .    
## C18.x        0.0                                                          
##      .1            0.000000    0.00000       .           .           .    
## C19X1.x     98.6                                                          
##        .1         -0.764524    0.24405     -0.7553     -0.7980     -0.7464
## C19X2.x      0.0                                                          
##        .1          0.000000    0.00000       .           .           .    
## C19X3.x     43.0                                                          
##        .1          0.713542    0.94536       .          1.6435       .    
## C19X4.x      1.3                                                          
##        .1          0.003295    0.04555       .           .           .    
## C19X5.x      1.6                                                          
##        .1         -0.010786    0.10962       .           .           .    
## C19X6.x      2.6                                                          
##        .1         -0.345474  100.95638       .           .           .    
## B1.x       100.0                                                          
##     .NHON          0.855789    0.17614      0.8640      0.8600      0.8640
## E1.x        19.7                                                          
##     .1             0.080864    0.18498       .           .          0.4185
##                                                                           
## nVar                                          3           4           4   
## BIC                                     -3405.3397  -3404.9470  -3403.6235
## post prob                                   0.232       0.191       0.098 
##            model 4     model 5   
## Intercept     -1.4055     -1.6575
## C2.x                             
##     .1          .           .    
## C4.x                             
##     .1          .           .    
## C7.x                             
##     .1         0.4039       .    
## C8.x                             
##     .1          .           .    
## C10.x                            
##      .1         .           .    
## C11.x                            
##      .1         .           .    
## C12.x                            
##      .1        0.6015      0.6522
## C13.x                            
##      .1         .           .    
## C14.x                            
##      .1         .           .    
## C15.x                            
##      .1         .           .    
## C17.x                            
##      .1         .           .    
## C18.x                            
##      .1         .           .    
## C19X1.x                          
##        .1     -0.7899     -0.7890
## C19X2.x                          
##        .1       .           .    
## C19X3.x                          
##        .1       .          1.6245
## C19X4.x                          
##        .1       .           .    
## C19X5.x                          
##        .1       .           .    
## C19X6.x                          
##        .1       .           .    
## B1.x                             
##     .NHON      0.8401      0.8587
## E1.x                             
##     .1          .          0.4055
##                                  
## nVar             4           5   
## BIC        -3402.9569  -3402.9112
## post prob      0.070       0.069
#logistic model 1

log <- glm(HOIQUY ~ C12+ C19X1+ C19X3+ B1+ E1 ,family=binomial(logit),data=a)

library("epiDisplay")
## Warning: package 'epiDisplay' was built under R version 3.2.5
## Loading required package: MASS
## Loading required package: nnet
logistic.display(log)
## 
## Logistic regression predicting HOIQUY : 1 vs 0 
##  
##                        crude OR(95%CI)   adj. OR(95%CI)     P(Wald's test)
## C12: 1 vs 2            1.68 (1.2,2.34)   1.89 (1.34,2.69)   < 0.001       
##                                                                           
## C19X1: 1 vs 2          0.56 (0.37,0.86)  0.47 (0.3,0.73)    < 0.001       
##                                                                           
## C19X3: 1 vs 2          4.71 (1.21,18.4)  5.02 (1.24,20.41)  0.024         
##                                                                           
## B1: NHON vs KHONG NHON 2.17 (1.56,3.02)  2.37 (1.68,3.35)   < 0.001       
##                                                                           
## E1: 1 vs 0             1.53 (1.06,2.21)  1.47 (1.01,2.16)   0.045         
##                                                                           
##                        P(LR-test)
## C12: 1 vs 2            < 0.001   
##                                  
## C19X1: 1 vs 2          < 0.001   
##                                  
## C19X3: 1 vs 2          0.017     
##                                  
## B1: NHON vs KHONG NHON < 0.001   
##                                  
## E1: 1 vs 0             0.042     
##                                  
## Log-likelihood = -389.8063
## No. of observations = 653
## AIC value = 791.6127
require(moonBook)
## Loading required package: moonBook
## Warning: package 'moonBook' was built under R version 3.2.5
library(survival)

ORplot(log,type=0,show.CI=TRUE,xlab="Odd ratio, 95% Confidence Interval",main="Odds Ratio")

phuong phap 2: dua vao bien so quan trong trong mo hinh

#mo hinh toan bo bien so

log <- glm(HOIQUY ~ .,family=binomial(logit),data=a)


#danh gia bien nao quan trong

library(caret)
## Warning: package 'caret' was built under R version 3.2.5
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:moonBook':
## 
##     densityplot
## The following object is masked from 'package:epiDisplay':
## 
##     dotplot
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.2.5
## 
## Attaching package: 'ggplot2'
## The following object is masked from 'package:epiDisplay':
## 
##     alpha
## 
## Attaching package: 'caret'
## The following object is masked from 'package:survival':
## 
##     cluster
varImp(log, scale = FALSE)
##           Overall
## C21    0.75272180
## C41    1.06637385
## C71    1.94170650
## C81    1.01826345
## C101   1.00155071
## C111   0.55463437
## C121   2.73462723
## C131   1.72317650
## C141   0.89078212
## C151   1.23966684
## C171   0.34198109
## C181   0.68381609
## C19X11 2.96911709
## C19X21 0.20271750
## C19X31 2.35528642
## C19X41 0.06406907
## C19X51 0.50852179
## C19X61 0.02140906
## B1NHON 4.33824727
## E11    1.77677737
#chon lai cac bien cho mo hinh cuoi cung


log1 <- glm(HOIQUY ~ C7+ C12+ C13+ C15+ C19X1+ C19X3+ B1+ E1 ,family=binomial(logit),data=a)


library("epiDisplay")

logistic.display(log1)
## 
## Logistic regression predicting HOIQUY : 1 vs 0 
##  
##                        crude OR(95%CI)   adj. OR(95%CI)     P(Wald's test)
## C7: 1 vs 2             1.67 (1.16,2.41)  1.43 (0.97,2.13)   0.073         
##                                                                           
## C12: 1 vs 2            1.68 (1.2,2.34)   1.65 (1.14,2.39)   0.008         
##                                                                           
## C13: 1 vs 2            1.15 (0.83,1.59)  1.31 (0.93,1.86)   0.124         
##                                                                           
## C15: 1 vs 2            1.58 (1.14,2.21)  1.26 (0.88,1.81)   0.211         
##                                                                           
## C19X1: 1 vs 2          0.56 (0.37,0.86)  0.45 (0.29,0.71)   < 0.001       
##                                                                           
## C19X3: 1 vs 2          4.71 (1.21,18.4)  4.32 (1.04,18.04)  0.045         
##                                                                           
## B1: NHON vs KHONG NHON 2.17 (1.56,3.02)  2.38 (1.67,3.37)   < 0.001       
##                                                                           
## E1: 1 vs 0             1.53 (1.06,2.21)  1.45 (0.99,2.14)   0.057         
##                                                                           
##                        P(LR-test)
## C7: 1 vs 2             0.074     
##                                  
## C12: 1 vs 2            0.007     
##                                  
## C13: 1 vs 2            0.123     
##                                  
## C15: 1 vs 2            0.211     
##                                  
## C19X1: 1 vs 2          < 0.001   
##                                  
## C19X3: 1 vs 2          0.034     
##                                  
## B1: NHON vs KHONG NHON < 0.001   
##                                  
## E1: 1 vs 0             0.055     
##                                  
## Log-likelihood = -386.3921
## No. of observations = 653
## AIC value = 790.7842
ORplot(log1,type=0,show.CI=TRUE,xlab="Odd ratio, 95% Confidence Interval",main="Odds Ratio")