The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion upload your document to rpubs.com and share the link to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
summary(anscombe)
## x1 x2 x3 x4
## Min. : 4.0 Min. : 4.0 Min. : 4.0 Min. : 8
## 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8
## Median : 9.0 Median : 9.0 Median : 9.0 Median : 8
## Mean : 9.0 Mean : 9.0 Mean : 9.0 Mean : 9
## 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.: 8
## Max. :14.0 Max. :14.0 Max. :14.0 Max. :19
## y1 y2 y3 y4
## Min. : 4.260 Min. :3.100 Min. : 5.39 Min. : 5.250
## 1st Qu.: 6.315 1st Qu.:6.695 1st Qu.: 6.25 1st Qu.: 6.170
## Median : 7.580 Median :8.140 Median : 7.11 Median : 7.040
## Mean : 7.501 Mean :7.501 Mean : 7.50 Mean : 7.501
## 3rd Qu.: 8.570 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
## Max. :10.840 Max. :9.260 Max. :12.74 Max. :12.500
data <- anscombe
x1 <- data[,1]
x2 <- data[,2]
x3 <- data[,3]
x4 <- data[,4]
y1 <- data[,5]
y2 <- data[,6]
y3 <- data[,7]
y4 <- data[,8]
fBasics() package!)mean(x1)
## [1] 9
mean(x2)
## [1] 9
mean(x3)
## [1] 9
mean(x4)
## [1] 9
var(x1)
## [1] 11
var(x2)
## [1] 11
var(x3)
## [1] 11
var(x4)
## [1] 11
plot(x1,y1,main = 'Scatter plot for x1 and y1')
plot(x2,y2,main = 'Scatter plot for x2 and y2')
plot(x3,y3,main = 'Scatter plot for x3 and y3')
plot(x4,y4,main = 'Scatter plot for x4 and y4')
par(mfrow=c(2,2))
plot(x1,y1,pch = 19,main = 'Scatter plot for x1 and y1',col = 'green')
plot(x2,y2,pch = 19,main = 'Scatter plot for x2 and y2',col = 'blue')
plot(x3,y3,pch = 19,main = 'Scatter plot for x3 and y3',col = 'purple')
plot(x4,y4,pch = 19,main = 'Scatter plot for x4 and y4',col = 'red')
lm() function.M1 <- lm(y1~x1)
M1
##
## Call:
## lm(formula = y1 ~ x1)
##
## Coefficients:
## (Intercept) x1
## 3.0001 0.5001
M2 <- lm(y2~x2)
M2
##
## Call:
## lm(formula = y2 ~ x2)
##
## Coefficients:
## (Intercept) x2
## 3.001 0.500
M3 <- lm(y3~x3)
M3
##
## Call:
## lm(formula = y3 ~ x3)
##
## Coefficients:
## (Intercept) x3
## 3.0025 0.4997
M4 <- lm(y4~x4)
M4
##
## Call:
## lm(formula = y4 ~ x4)
##
## Coefficients:
## (Intercept) x4
## 3.0017 0.4999
par(mfrow=c(2,2))
plot(x1,y1,pch = 19,main = 'Scatter plot for x1 and y1 in Anscombe dataset',col='green')
abline(M1,col = 'red')
plot(x2,y2,pch = 19,main = 'Scatter plot for x2 and y2 in Anscombe dataset',col = 'purple')
abline(M2, col = 'red')
plot(x3,y3,pch = 19,main = 'Scatter plot for x3 and y3 in Anscombe dataset',col = 'blue')
abline(M3, col = 'red')
plot(x4,y4,pch = 19,main = 'Scatter plot for x4 and y4 in Anscombe dataset',col='brown')
abline(M4, col = 'red')
anova(M1)
Analysis of Variance Table
Response: y1 Df Sum Sq Mean Sq F value Pr(>F)
x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(M2)
Analysis of Variance Table
Response: y2 Df Sum Sq Mean Sq F value Pr(>F)
x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(M3)
Analysis of Variance Table
Response: y3 Df Sum Sq Mean Sq F value Pr(>F)
x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(M4)
Analysis of Variance Table
Response: y4 Df Sum Sq Mean Sq F value Pr(>F)
x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Anscombe’s Quartet has four distinctive datasets of x and y values. The variance analysis show that the intercepts and the residuals from the linear model fit are roughly alike for all the four datasets. The data visualization that is derived from #6 on the other hand show that the datasets are different entirely. Thus this proves the imporance of data visulization in ordre to draw accurate results about a dataset.