delv.time <- read.csv("C:/Users/welcome/Downloads/MLR-Delivery Time.csv", header = T) # load data
attach(delv.time) # attach data
x <- model.matrix(DeliveryTime ~ Cases + Distance) # design matrix for independent variables
y <- DeliveryTime # dependent variable
detach(delv.time) # detach data
knitr::asis_output(htmltools::htmlPreserve("
<div>
<div>block 2
</div>
</div>
"))
betas <- solve(crossprod(x))%*%crossprod(x,y)
sy <- sum(y) # sigma of y
n <- length(y) # no. of observations
SST <- t(y)%*%y-(sy*sy/n) # Total sum of sqaures
SSres <- t(y)%*%y-(t(betas)%*%crossprod(x,y)) # Sum of squares of residuals
SSreg <- SST - SSres # Sum of squares of regression
sigmasqr <- SSres/(length(y) - 3) # sigma squares or (MSE)
varofbeta <- sigmasqr[1]*solve(crossprod(x)) # variance of beta
cat("SST:", SST,"\nSSresiduals:", SSres, "\nSSregression:", SSreg)
## SST: 5784.543
## SSresiduals: 233.7317
## SSregression: 5550.811
print(betas)
## [,1]
## (Intercept) 2.34123115
## Cases 1.61590721
## Distance 0.01438483
print(varofbeta)
## (Intercept) Cases Distance
## (Intercept) 1.2028170618 -0.0472625981 -8.889514e-04
## Cases -0.0472625981 0.0291504123 -5.084417e-04
## Distance -0.0008889514 -0.0005084417 1.305439e-05