set up observed tree
s=sim_phyl(seed=3)
s2 = s$tree.extant
initial parameter and 1st MC
pars=mle_tree(s$tree)
n_trees=1000
time =proc.time()
recs = sim_srt(wt=s2$wt,pars=pars,n_trees = n_trees)
proc.time() - time
## user system elapsed
## 3 0 3
observe dimensions
size = vector(mode = 'numeric',length = n_trees)
for(i in 1:n_trees){
rec = recs[[i]]
size[i] = length(rec$wt)
}
qplot(size,geom='histogram')
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
table(size)
## size
## 68 74 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110
## 1 2 3 3 8 13 19 22 30 41 53 57 75 65 79 102 82 72
## 112 114 116 118 120 122 124 126 128 130 132 138 142
## 60 59 37 33 21 22 13 10 6 3 5 3 1
length(s$tree$wt)
## [1] 102
generation the meta set of trees
dim <- function(list){
length(list$wt)
}
checkdim <- function(list,i){
dim(list) == i
}
meta_srt <- function(recs){
size = vector(mode = 'numeric',length = length(recs))
for(i in 1:n_trees){
rec = recs[[i]]
size[i] = length(rec$wt)
}
count = as.data.frame(table(size))
Mrecs = list()
for(i in count$size){
Mrecs = c(Mrecs,list(tree=recs[lapply(recs,dim) == i]))
}
return(list(Mrecs=Mrecs,count=count))
}
Mrecs = meta_srt(recs)
#count = Mrecs$count
#Mrecs=Mrecs$Mrecs
#length(Mrecs[[1]])
#length(Mrecs[[18]])
#ahora, estimar parametros para cada grupo y ponerlos en su df con su dimension y peso...
estimations_matrix <- function(Mrecs){
count = Mrecs$count
Mrecs=Mrecs$Mrecs
m=length(Mrecs)
M = matrix(ncol=5,nrow=m)
for(i in 1:m){
p = subplex(par=c(2,1,80),fn=llik_st,setoftrees = Mrecs[[i]])
M[i,1] = as.numeric(as.character(count$size[i]))
M[i,2] = count$Freq[i]
M[i,3:5] = p$par
}
return(M)
}
M = estimations_matrix(Mrecs)
sum(M[,1]*M[,3])/sum(M[,1])
## [1] 0.8297868
sum(M[,1]*M[,4])/sum(M[,1])
## [1] 0.08665098
sum(M[,1]*M[,5])/sum(M[,1])
## [1] 39.9701
subplex(par=c(2,1,80),fn=llik_st,setoftrees = recs)$par
## [1] 0.64903121 0.08382141 41.80198210
pars
## [1] 0.88886163 0.08410373 40.74476402
# Ok, we have the estimations and matrix for next iteration...
m = nrow(M)
MM = list()
for(i in 1:m){
n_trees = M[i,2]
pars = M[i,3:5]
MM = c(MM,sim_srt(wt=s2$wt,pars=pars,n_trees = n_trees))
}
n_trees = length(MM)
size = vector(mode = 'numeric',length = n_trees)
for(i in 1:n_trees){
rec = MM[[i]]
size[i] = length(rec$wt)
}
qplot(size,geom='histogram')
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Mrecs = meta_srt(recs)
#count = Mrecs$count
#Mrecs=Mrecs$Mrecs
#m=length(Mrecs)
M = estimations_matrix(Mrecs)
M
## [,1] [,2] [,3] [,4] [,5]
## [1,] 68 1 0.6522617 0.04720154 37.01687
## [2,] 74 2 0.7349055 0.05024834 39.45220
## [3,] 80 3 0.7654955 0.06102321 36.63922
## [4,] 82 3 0.6698479 0.06104050 39.81561
## [5,] 84 8 0.7961511 0.06364183 38.40640
## [6,] 86 13 0.7564933 0.06524713 39.70007
## [7,] 88 19 0.7234102 0.06668620 40.03981
## [8,] 90 22 0.6647717 0.06933196 40.47570
## [9,] 92 30 0.6842927 0.07123600 40.45750
## [10,] 94 41 0.6308719 0.07299010 41.59209
## [11,] 96 53 0.7046054 0.07498968 40.40724
## [12,] 98 57 0.7255015 0.07723244 40.42927
## [13,] 100 75 0.7389280 0.08013433 40.17690
## [14,] 102 65 0.7198494 0.08019416 40.96863
## [15,] 104 79 0.7343407 0.08264250 40.85585
## [16,] 106 102 0.6589164 0.08384837 41.90242
## [17,] 108 82 0.7601050 0.08524965 40.86969
## [18,] 110 72 0.8178037 0.08794716 40.21846
## [19,] 112 60 0.7075206 0.08982214 41.05115
## [20,] 114 59 0.8485831 0.09205627 40.20944
## [21,] 116 37 0.8868974 0.09214597 39.94341
## [22,] 118 33 0.8867810 0.09273478 40.36408
## [23,] 120 21 0.9189229 0.09473646 40.14669
## [24,] 122 22 0.9173494 0.09693036 40.10554
## [25,] 124 13 0.9469329 0.10232616 39.41625
## [26,] 126 10 1.0050369 0.10110139 40.10378
## [27,] 128 6 0.9773943 0.10198337 39.64559
## [28,] 130 3 0.9343398 0.10368236 40.07864
## [29,] 132 5 1.0228318 0.10427636 40.14036
## [30,] 138 3 1.1147411 0.11080832 39.32738
## [31,] 142 1 1.0066756 0.12356054 37.92075
sum(M[,1]*M[,3])/sum(M[,1])
## [1] 0.8297868
sum(M[,1]*M[,4])/sum(M[,1])
## [1] 0.08665098
sum(M[,1]*M[,5])/sum(M[,1])
## [1] 39.9701
s=sim_phyl(seed=3)
s2 = s$tree.extant
init_pars = c(2,1,80)
n_trees=1000
time = proc.time()
recs = sim_srt(wt=s2$wt,pars=init_pars,n_trees = n_trees)
proc.time()-time
## user system elapsed
## 150.604 0.012 150.610
#for
Mrecs = meta_srt(recs)
#count = Mrecs$count
#Mrecs=Mrecs$Mrecs
time=proc.time()
M = estimations_matrix(Mrecs)
proc.time() - time
## user system elapsed
## 82.360 0.020 82.379
superlista = vector(mode='list',length = 40)
time2=proc.time()
for(l in 1:40){
time = proc.time()
m = nrow(M)
recs = list()
for(i in 1:m){
n_trees = M[i,2]
pars = M[i,3:5]
recs = c(recs,sim_srt(wt=s2$wt,pars=pars,n_trees = n_trees))
}
n_trees = length(recs)
size = vector(mode = 'numeric',length = n_trees)
for(i in 1:n_trees){
rec = recs[[i]]
size[i] = length(rec$wt)
}
print(qplot(size,geom='histogram'))
Mrecs = meta_srt(recs)
# count = Mrecs$count
# Mrecs=Mrecs$Mrecs
M = estimations_matrix(Mrecs)
superlista[[l]] = M
print(proc.time() - time)
sum(M[,1]*M[,3])/sum(M[,1])
sum(M[,1]*M[,4])/sum(M[,1])
sum(M[,1]*M[,5])/sum(M[,1])
}
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 197.420 0.032 197.459
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 172.616 0.016 172.637
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 150.016 0.004 150.050
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 127.464 0.000 127.465
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 114.644 0.000 114.655
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 92.200 0.000 92.207
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 80.512 0.004 80.545
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 68.428 0.000 68.452
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 57.516 0.000 57.516
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 51.688 0.000 51.683
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 45.436 0.000 45.438
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 40.984 0.000 40.985
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 38.164 0.000 38.190
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 37.108 0.000 37.146
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 32.556 0.100 32.670
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 29.592 0.004 29.596
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 28.576 0.152 28.753
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 26.248 0.000 26.251
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 24.776 0.000 24.778
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 24.308 0.000 24.328
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 25.252 0.004 25.278
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 23.400 0.000 23.408
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 22.064 0.000 22.078
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 21.984 0.000 22.019
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 21.300 0.004 21.327
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 20.004 0.000 20.003
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 19.580 0.000 19.585
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 18.956 0.000 18.957
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 19.304 0.000 19.307
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 19.872 0.000 19.887
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 19.316 0.004 19.334
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 19.192 0.228 19.419
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 18.052 0.000 18.053
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 18.556 0.000 18.562
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 17.988 0.004 17.994
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 18.604 0.004 18.609
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 18.244 0.000 18.247
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 19.252 0.000 19.268
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 19.744 0.012 19.763
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## user system elapsed
## 19.788 0.000 19.790
proc.time()-time2
## user system elapsed
## 1840.744 0.572 1841.741
lambda=vector(mode='numeric',length=length(superlista))
mu = vector(mode='numeric',length=length(superlista))
for(i in 1:length(superlista)){
M = superlista[[i]]
lambda[i] = sum(M[,1]*M[,3])/sum(M[,1])
mu[i] = sum(M[,1]*M[,4])/sum(M[,1])
print(sum(M[,1]*M[,5])/sum(M[,1]))
}
## [1] 100.8514
## [1] 105.8426
## [1] 107.6146
## [1] 106.8492
## [1] 104.1293
## [1] 98.9889
## [1] 93.6636
## [1] 87.4043
## [1] 82.12475
## [1] 77.43614
## [1] 72.75213
## [1] 68.67908
## [1] 64.44687
## [1] 60.9607
## [1] 57.79565
## [1] 55.3054
## [1] 53.01928
## [1] 50.88001
## [1] 48.81282
## [1] 47.27042
## [1] 45.67818
## [1] 44.75304
## [1] 43.14697
## [1] 42.37498
## [1] 41.2965
## [1] 40.67438
## [1] 40.25462
## [1] 39.99555
## [1] 39.51122
## [1] 38.90683
## [1] 38.78959
## [1] 38.47266
## [1] 38.39976
## [1] 38.06462
## [1] 38.14314
## [1] 37.97935
## [1] 38.11994
## [1] 38.02256
## [1] 37.92704
## [1] 37.82183
qplot(lambda,mu)
rd = length(s$tree$wt)
rd
## [1] 102
sub_meta <- function(recs,rdim){
size = vector(mode = 'numeric',length = length(recs))
for(i in 1:n_trees){
rec = recs[[i]]
size[i] = length(rec$wt)
}
count = as.data.frame(table(size))
Mrecs = list()
# for(i in count$size){
Mrecs = recs[lapply(recs,dim) == rdim]
# }
return(list(Mrecs=Mrecs,count=count))
}
pars=c(0.9,0.1,40)
n_it = 50
MMM = matrix(nrow=n_it,ncol=3)
n_trees=50000
for(j in 1:n_it){
#print(pars)
recs = sim_srt(wt=s2$wt,pars=pars,n_trees = n_trees)
n_trees = length(recs)
size = vector(mode = 'numeric',length = n_trees)
for(i in 1:n_trees){
rec = recs[[i]]
size[i] = length(rec$wt)
}
print(qplot(size,geom='histogram'))
sMrecs = sub_meta(recs,rd)
sMrecs = sMrecs$Mrecs
sMrecs
p = subplex(par=c(2,1,80),fn=llik_st,setoftrees = sMrecs)
pars = p$par
MMM[j,] = pars
}
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
MMM
## [,1] [,2] [,3]
## [1,] 0.6511724 0.07956196 42.13626
## [2,] 0.5938594 0.08212105 42.22457
## [3,] 0.6235101 0.08239771 41.65961
## [4,] 0.6203222 0.08233729 41.63032
## [5,] 0.6218696 0.08231023 41.64987
## [6,] 0.5914099 0.08233795 42.17856
## [7,] 0.5931867 0.08252984 42.18321
## [8,] 0.5927653 0.08248465 42.18324
## [9,] 0.6225664 0.08261316 41.63275
## [10,] 0.6217351 0.08229371 41.64714
## [11,] 0.6581938 0.08216057 41.13895
## [12,] 0.6207232 0.08213455 41.64950
## [13,] 0.6211107 0.08233681 41.64003
## [14,] 0.6223863 0.08234757 41.65016
## [15,] 0.6208616 0.08228887 41.63913
## [16,] 0.5917039 0.08232017 42.18341
## [17,] 0.6240415 0.08253844 41.65414
## [18,] 0.5912057 0.08226863 42.18292
## [19,] 0.5923098 0.08257776 42.16975
## [20,] 0.5924918 0.08254560 42.17445
## [21,] 0.6238504 0.08253695 41.65348
## [22,] 0.6208320 0.08228639 41.63897
## [23,] 0.5899934 0.08246440 42.15170
## [24,] 0.5679145 0.08250687 42.73767
## [25,] 0.6251565 0.08270215 41.65133
## [26,] 0.6229688 0.08224236 41.66511
## [27,] 0.6236454 0.08226130 41.66960
## [28,] 0.6207684 0.08235244 41.63272
## [29,] 0.6211857 0.08227319 41.64364
## [30,] 0.6221897 0.08223154 41.65714
## [31,] 0.6209567 0.08226390 41.64150
## [32,] 0.6213979 0.08240907 41.63530
## [33,] 0.6219205 0.08238689 41.64185
## [34,] 0.6221263 0.08236275 41.64582
## [35,] 0.5934054 0.08233496 42.20175
## [36,] 0.6242931 0.08240507 41.66814
## [37,] 0.5668064 0.08228021 42.74228
## [38,] 0.6269755 0.08266461 41.67394
## [39,] 0.6219755 0.08241330 41.64185
## [40,] 0.6210751 0.08238042 41.63471
## [41,] 0.5923540 0.08226017 42.19588
## [42,] 0.5929803 0.08271330 42.16569
## [43,] 0.6240340 0.08252229 41.65475
## [44,] 0.6203573 0.08241830 41.62441
## [45,] 0.5909301 0.08237742 42.16976
## [46,] 0.5921833 0.08258790 42.16745
## [47,] 0.6224892 0.08249566 41.64159
## [48,] 0.6567531 0.08217423 41.12306
## [49,] 0.6185624 0.08210098 41.62945
## [50,] 0.6202857 0.08230280 41.63162
mle_tree(s$tree)
## [1] 0.88886163 0.08410373 40.74476402
s=sim_phyl(mu0=0.4,seed=3)
rd = length(s$tree$wt)
rd
## [1] 287
s2 = s$tree.extant
pars=c(1.2,0.3,40)
n_it = 50
MMM = matrix(nrow=n_it,ncol=3)
n_trees=10000
for(j in 1:n_it){
#print(pars)
recs = sim_srt(wt=s2$wt,pars=pars,n_trees = n_trees)
n_trees = length(recs)
size = vector(mode = 'numeric',length = n_trees)
for(i in 1:n_trees){
rec = recs[[i]]
size[i] = length(rec$wt)
}
print(qplot(size,geom='histogram'))
sMrecs = sub_meta(recs,rd)
sMrecs = sMrecs$Mrecs
sMrecs
p = subplex(par=c(2,1,80),fn=llik_st,setoftrees = sMrecs)
pars = p$par
MMM[j,] = pars
}
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
MMM
## [,1] [,2] [,3]
## [1,] 1.087239 0.3143710 37.48299
## [2,] 1.071940 0.3220699 36.07030
## [3,] 1.090918 0.3246159 35.32217
## [4,] 1.131392 0.3240413 34.78653
## [5,] 1.176092 0.3226267 34.33702
## [6,] 1.205662 0.3220935 34.02351
## [7,] 1.211292 0.3243962 33.74556
## [8,] 1.236106 0.3247029 33.54922
## [9,] 1.232833 0.3268427 33.33283
## [10,] 1.251501 0.3258224 33.34709
## [11,] 1.247896 0.3263675 33.24202
## [12,] 1.271033 0.3268295 33.14423
## [13,] 1.280133 0.3253345 33.12600
## [14,] 1.300602 0.3246287 33.08191
## [15,] 1.296330 0.3265938 32.91103
## [16,] 1.319807 0.3279351 32.68053
## [17,] 1.313371 0.3286779 32.58483
## [18,] 1.334889 0.3265363 32.62886
## [19,] 1.349140 0.3255544 32.62208
## [20,] 1.362774 0.3241111 32.65958
## [21,] 1.376007 0.3231800 32.73204
## [22,] 1.392845 0.3244325 32.61224
## [23,] 1.414476 0.3245159 32.48426
## [24,] 1.425561 0.3236990 32.49314
## [25,] 1.414747 0.3235606 32.54351
## [26,] 1.415369 0.3222123 32.57895
## [27,] 1.408988 0.3232344 32.45904
## [28,] 1.398293 0.3245735 32.45220
## [29,] 1.381155 0.3279197 32.25754
## [30,] 1.384600 0.3276393 32.35612
## [31,] 1.391675 0.3270588 32.35386
## [32,] 1.397541 0.3236624 32.48764
## [33,] 1.396265 0.3243382 32.51724
## [34,] 1.384132 0.3251238 32.48880
## [35,] 1.379865 0.3272897 32.27485
## [36,] 1.395200 0.3256359 32.32352
## [37,] 1.376958 0.3250698 32.36121
## [38,] 1.397178 0.3230896 32.48139
## [39,] 1.400389 0.3241574 32.47425
## [40,] 1.390997 0.3261717 32.38811
## [41,] 1.385926 0.3266155 32.17641
## [42,] 1.381946 0.3270737 32.17309
## [43,] 1.389940 0.3257508 32.29418
## [44,] 1.255971 0.3258267 32.59900
## [45,] 1.287059 0.3273331 32.71031
## [46,] 1.262473 0.3278451 32.62121
## [47,] 1.291168 0.3287884 32.66239
## [48,] 1.306374 0.3272277 32.78325
## [49,] 1.314460 0.3259234 32.80293
## [50,] 1.332139 0.3235436 32.88893
mle_tree(s$tree)
## [1] 0.9148556 0.4672226 30.9270569