Previous Results

previously, the best results are from the May 6th. The model used only 57 classifiers without prior.

And the confidence interval of 90% is

[1] 0.7346939

Verify all the overlapping matrices are correctly structured.

  1. Structure Overlaping matrix with density

  1. Structure Overlaping matrix with probability: there’s no difference!

LS0tCnRpdGxlOiAiT3ZlcmxhcHBpbmcgTWF0cml4LS1SZWRvIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIFByZXZpb3VzIFJlc3VsdHMKcHJldmlvdXNseSwgdGhlIGJlc3QgcmVzdWx0cyBhcmUgZnJvbSB0aGUgTWF5IDZ0aC4gVGhlIG1vZGVsIHVzZWQgb25seSA1NyBjbGFzc2lmaWVycyB3aXRob3V0IHByaW9yLgoKYGBge3IsIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxvYWQoIn4vRG9jdW1lbnRzL0dpdEh1Yi9NL3Byb3BvdGlvbmFsTWF0cml4L3JlZG9fNV82LzVfNl9wTWF0cml4X1JNU0RfOTBfbm9Qcmlvci5SRGF0YSIpClJlc3VsdHNfNV82IDwtIHJlc3VsdHMxClJlc3VsdHNfNV82LnYgPC0gdW5saXN0KGxhcHBseShSZXN1bHRzXzVfNiwgZnVuY3Rpb24oeCl7CiAgICAgICAgICAgICAgIGlmKGlzLm51bGwoeFtbNF1dKSl7CiAgICAgICAgICAgICAgICAgICAgICAgcmV0dXJuKE5BKQogICAgICAgICAgICAgICB9ZWxzZXtyZXR1cm4oeFtbNF1dKX0KfSkpCgpSZXN1bHRzXzVfNi5vcmRlcmVkIDwtIHNvcnQoUmVzdWx0c181XzYudikKbiA9IGxlbmd0aChSZXN1bHRzXzVfNi5vcmRlcmVkKQpwbG90KFJlc3VsdHNfNV82Lm9yZGVyZWQpCmFibGluZShoPTApCmFibGluZSh2PWMocm91bmQobiowLjA1KSxyb3VuZChuKjAuOTUpKSkKYGBgCgpBbmQgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgb2YgOTAlIGlzCmBgYHtyLCBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpsb0VuZCA8LSBSZXN1bHRzXzVfNi5vcmRlcmVkW3JvdW5kKG4qMC4wNSldCmhpRW5kIDwtIFJlc3VsdHNfNV82Lm9yZGVyZWRbcm91bmQobiowLjk1KV0KCnByaW50KGhpRW5kIC0gbG9FbmQpCmBgYAoKIyBWZXJpZnkgYWxsIHRoZSBvdmVybGFwcGluZyBtYXRyaWNlcyBhcmUgY29ycmVjdGx5IHN0cnVjdHVyZWQuCmBgYHtyLCBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojZ2V0d2QoKQpzb3VyY2UoInNvdXJjZS5SIikKYGBgCgoxLiBTdHJ1Y3R1cmUgT3ZlcmxhcGluZyBtYXRyaXggd2l0aCBkZW5zaXR5CgogICAqIEZvciA1NyBhbWlubyBhY2lkcwpgYGB7ciwgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KCiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyBQcm9iYWJpbGl0eSBmdW5jdGlvbgpBYVByb2IuZiA9IGZ1bmN0aW9uKGNoaVN0cil7CiAgICAgICAgcHJvYiA9IGRjaGlzcShjaGlTdHIsIGRmPTIpCiAgICAgICAgcmV0dXJuKHByb2IpCn0KCmdseVByb2IuZiA9IGZ1bmN0aW9uKHBhcmEpewogICAgICAgIHByb2IgPSBkY2hpc3EocGFyYV4yLCBkZj0xKQogICAgICAgIHJldHVybihwcm9iKQp9CgojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMgQ2FsY3VsYXRpb24KT3ZlcmxhcHBpbmdNYXRyaXhfMSA8LSBkYXRhLmZyYW1lKCkKCmZvciAoaSBpbiAxOjU3KSB7CiAgICAgICAgYWEgPSBBQV9TU19sYWJlbFtpLDFdCiAgICAgICAgc3MgPSBBQV9TU19sYWJlbFtpLDJdCgogICAgICAgIGNzIDwtIHBvcC50YWJsZSAlPiUgZmlsdGVyKFJlc2lkdWU9PWFhICYgU1MgPT0gc3MpCiAgICAgICAgY2FjYiA8LSBkYXRhLmZyYW1lKENBID0gc3Vic2V0KGNzLCBDYXJib24gPT0gIkNBIilbIlZhbHVlIl0sIAogICAgICAgICAgICAgICAgICAgICAgICAgICBDQiA9IHN1YnNldChjcywgQ2FyYm9uID09ICJDQiIpWyJWYWx1ZSJdKQogICAgICAgIGNvbG5hbWVzKGNhY2IpIDwtIGMoIkNBIiwgIkNCIikKICAgICAgICBjYWNiID0gbmEub21pdChjYWNiKQogICAgICAgIHJvd1Byb2JzID0gYygpCiAgICAgICAgZm9yIChzIGluIGMoIkIiLCAiQyIsICJIIikpIHsKICAgICAgICAgICAgICAgIHByb2JpbGl0aWVzIDwtIGFwcGx5KGNhY2IsIDEsIGZ1bmN0aW9uKENhQ2JDUy52KXtBYVByb2IuZihDaGlTdHIuZihDYUNiQ1Mudiwgc2Vjb25kYXJ5U3RydWN0dXJlID0gcywgaW52Q292TWF0TGlzdC5sLkQpKX0gKQogICAgICAgICAgICAgICAgcm93UHJvYnNfc3MgPC0gYXBwbHkocHJvYmlsaXRpZXMsIDEsIG1lYW4pCiAgICAgICAgICAgICAgICByb3dQcm9ic19zc1szXSA8LSByb3dQcm9ic19zc1syXStyb3dQcm9ic19zc1szXQogICAgICAgICAgICAgICAgcm93UHJvYnNfc3MgPC0gcm93UHJvYnNfc3NbLTJdCiAgICAgICAgICAgICAgICByb3dQcm9icyA9IGMocm93UHJvYnMsIHJvd1Byb2JzX3NzKQogICAgICAgIH0KICAgICAgICAgICAgICAgIAogICAgICAgIE92ZXJsYXBwaW5nTWF0cml4XzEgPC0gcmJpbmQoT3ZlcmxhcHBpbmdNYXRyaXhfMSwgcm93UHJvYnMpCn0KCmBgYAoKYGBge3IsIGVjaG89RkFMU0UsIGZpZy5oZWlnaHQ9MTQsIGZpZy53aWR0aD0xNCwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KY29sbmFtZXMoT3ZlcmxhcHBpbmdNYXRyaXhfMSkgPC0gcGFzdGUwKEFBX1NTX2xhYmVsJEFBLCBBQV9TU19sYWJlbCRTUykKcm93bmFtZXMoT3ZlcmxhcHBpbmdNYXRyaXhfMSkgPC0gcGFzdGUwKEFBX1NTX2xhYmVsJEFBLCBBQV9TU19sYWJlbCRTUykKT3ZlcmxhcHBpbmdNYXRyaXhfMV9ub3JtIDwtIHNjYWxlKE92ZXJsYXBwaW5nTWF0cml4XzEsIGNlbnRlcj1GQUxTRSwgc2NhbGU9Y29sU3VtcyhPdmVybGFwcGluZ01hdHJpeF8xKSkKcGx0Lm1hdHJpeChhcy5tYXRyaXgoT3ZlcmxhcHBpbmdNYXRyaXhfMV9ub3JtKSkKCmBgYAoKICAgKiBGb3IgZ2x5Y2luZQpgYGB7ciwgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KR2x5UHJvcG9ydGlvbmFsTWF0cml4IDwtIGRhdGEuZnJhbWUoKQoKc3RkTm9ybS5mID0gZnVuY3Rpb24odmFsdWUsIG11LCBzZCl7CiAgICAgICAgcmV0dXJuKCh2YWx1ZS1tdSkvc2QpCn0KCm11X2dseSA9IENBTXVUYWJsZSAlPiUgZmlsdGVyKFJlc2lkdWU9PSJHIikKc2RfZ2x5ID0gQ0FTZFRhYmxlICU+JSBmaWx0ZXIoUmVzaWR1ZT09IkciKQoKZm9yIChzcyBpbiBjKCJCIiwgIkMiLCAiSCIpKSB7CgogICAgICAgIGNzIDwtIGdseXBvcC50YWJsZSAlPiUgZmlsdGVyKFNTID09IHNzKSAlPiUgc2VsZWN0KFZhbHVlKQogICAgICAgIGNzID0gYXMubnVtZXJpYyhjcyRWYWx1ZSkKICAgICAgICBjcyA9IG5hLm9taXQoY3MpCgogICAgICAgIHJvd1Byb2JzID0gYygpCiAgICAgICAgZm9yIChzIGluIGMoIkIiLCAiQyIsICJIIikpIHsKICAgICAgICAgICAgICAgIG1lYW5fY2EgPC0gbXVfZ2x5W3NdCiAgICAgICAgICAgICAgICBzZF9jYSA8LSBzZF9nbHlbc10KICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgY3Nfc3RkID0gdW5saXN0KHNhcHBseShjcywgZnVuY3Rpb24odmFsdWUpe3N0ZE5vcm0uZih2YWx1ZSwgbWVhbl9jYSwgc2RfY2EpfSkpCiAgICAgICAgICAgICAgICBwcm9iaWxpdGllcyA8LSBzYXBwbHkoY3Nfc3RkLCBmdW5jdGlvbihjYWNzKXtnbHlQcm9iLmYoY2Fjcyl9ICkKICAgICAgICAgICAgICAgIHJvd1Byb2JzX3NzIDwtIG1lYW4ocHJvYmlsaXRpZXMpCiAgICAgICAgICAgICAgICByb3dQcm9icyA9IGMocm93UHJvYnMsIHJvd1Byb2JzX3NzKQogICAgICAgIH0KICAgICAgICAgICAgICAgIAogICAgICAgIEdseVByb3BvcnRpb25hbE1hdHJpeCA8LSByYmluZChHbHlQcm9wb3J0aW9uYWxNYXRyaXgsIHJvd1Byb2JzKQp9CgoKIyBSYXcgbWF0cml4CmNvbG5hbWVzKEdseVByb3BvcnRpb25hbE1hdHJpeCkgPC0gYygiQiIsICJDIiwgIkgiKQpyb3duYW1lcyhHbHlQcm9wb3J0aW9uYWxNYXRyaXgpIDwtIGMoIkIiLCAiQyIsICJIIikKYGBgCgpgYGB7ciwgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KR2x5UHJvcG9ydGlvbmFsTWF0cml4X25vcm0gPC0gc2NhbGUoR2x5UHJvcG9ydGlvbmFsTWF0cml4LCBjZW50ZXI9RkFMU0UsIHNjYWxlPWNvbFN1bXMoR2x5UHJvcG9ydGlvbmFsTWF0cml4KSkKcGx0Lm1hdHJpeChhcy5tYXRyaXgoR2x5UHJvcG9ydGlvbmFsTWF0cml4X25vcm0pKQoKYGBgCgoKCgoKCgoyLiBTdHJ1Y3R1cmUgT3ZlcmxhcGluZyBtYXRyaXggd2l0aCBwcm9iYWJpbGl0eTogdGhlcmUncyBubyBkaWZmZXJlbmNlIQoKYGBge3IsIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CkFhUHJvYi5mID0gZnVuY3Rpb24oY2hpU3RyKXsKICAgICAgICBwcm9iID0gMSAtIHBjaGlzcShjaGlTdHIsIGRmPTIpCiAgICAgICAgcmV0dXJuKHByb2IpCn0KCmdseVByb2IuZiA9IGZ1bmN0aW9uKHBhcmEpewogICAgICAgIHByb2IgPSAxIC0gcGNoaXNxKHBhcmFeMiwgZGY9MSkKICAgICAgICByZXR1cm4ocHJvYikKfQoKIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIENhbGN1bGF0aW9uCk92ZXJsYXBwaW5nTWF0cml4XzIgPC0gZGF0YS5mcmFtZSgpCgpmb3IgKGkgaW4gMTo1NykgewogICAgICAgIGFhID0gQUFfU1NfbGFiZWxbaSwxXQogICAgICAgIHNzID0gQUFfU1NfbGFiZWxbaSwyXQoKICAgICAgICBjcyA8LSBwb3AudGFibGUgJT4lIGZpbHRlcihSZXNpZHVlPT1hYSAmIFNTID09IHNzKQogICAgICAgIGNhY2IgPC0gZGF0YS5mcmFtZShDQSA9IHN1YnNldChjcywgQ2FyYm9uID09ICJDQSIpWyJWYWx1ZSJdLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0IgPSBzdWJzZXQoY3MsIENhcmJvbiA9PSAiQ0IiKVsiVmFsdWUiXSkKICAgICAgICBjb2xuYW1lcyhjYWNiKSA8LSBjKCJDQSIsICJDQiIpCiAgICAgICAgY2FjYiA9IG5hLm9taXQoY2FjYikKICAgICAgICByb3dQcm9icyA9IGMoKQogICAgICAgIGZvciAocyBpbiBjKCJCIiwgIkMiLCAiSCIpKSB7CiAgICAgICAgICAgICAgICBwcm9iaWxpdGllcyA8LSBhcHBseShjYWNiLCAxLCBmdW5jdGlvbihDYUNiQ1Mudil7QWFQcm9iLmYoQ2hpU3RyLmYoQ2FDYkNTLnYsIHNlY29uZGFyeVN0cnVjdHVyZSA9IHMsIGludkNvdk1hdExpc3QubC5EKSl9ICkKICAgICAgICAgICAgICAgIHJvd1Byb2JzX3NzIDwtIGFwcGx5KHByb2JpbGl0aWVzLCAxLCBtZWFuKQogICAgICAgICAgICAgICAgcm93UHJvYnNfc3NbM10gPC0gcm93UHJvYnNfc3NbMl0rcm93UHJvYnNfc3NbM10KICAgICAgICAgICAgICAgIHJvd1Byb2JzX3NzIDwtIHJvd1Byb2JzX3NzWy0yXQogICAgICAgICAgICAgICAgcm93UHJvYnMgPSBjKHJvd1Byb2JzLCByb3dQcm9ic19zcykKICAgICAgICB9CiAgICAgICAgICAgICAgICAKICAgICAgICBPdmVybGFwcGluZ01hdHJpeF8yIDwtIHJiaW5kKE92ZXJsYXBwaW5nTWF0cml4XzIsIHJvd1Byb2JzKQp9CgpgYGAKCmBgYHtyLCBlY2hvPUZBTFNFLCBmaWcuaGVpZ2h0PTE0LCBmaWcud2lkdGg9MTQsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmNvbG5hbWVzKE92ZXJsYXBwaW5nTWF0cml4XzIpIDwtIHBhc3RlMChBQV9TU19sYWJlbCRBQSwgQUFfU1NfbGFiZWwkU1MpCnJvd25hbWVzKE92ZXJsYXBwaW5nTWF0cml4XzIpIDwtIHBhc3RlMChBQV9TU19sYWJlbCRBQSwgQUFfU1NfbGFiZWwkU1MpCk92ZXJsYXBwaW5nTWF0cml4XzJfbm9ybSA8LSBzY2FsZShPdmVybGFwcGluZ01hdHJpeF8yLCBjZW50ZXI9RkFMU0UsIHNjYWxlPWNvbFN1bXMoT3ZlcmxhcHBpbmdNYXRyaXhfMikpCnBsdC5tYXRyaXgoYXMubWF0cml4KE92ZXJsYXBwaW5nTWF0cml4XzJfbm9ybSkpCgpgYGA=