ReferĂȘncia: Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum.
library(pwr)
library(pwr2)
Usage pwr.chisq.test(w = NULL, N = NULL, df = NULL, sig.level = 0.05, power = NULL) Arguments
w
Effect size
N
Total number of observations
df
degree of freedom (depends on the chosen test)
sig.level
Significance level (Type I error probability)
power
Power of test (1 minus Type II error probability)
pwr.chisq.test(w=0.25,df=(2-1)*(2-1),sig.level=0.01, power=0.95)
Chi squared power calculation
w = 0.25
N = 285.0266
df = 1
sig.level = 0.01
power = 0.95
NOTE: N is the number of observations
r
r # alguns tamanhos de amostra pwr.chisq.test(w=0.3,df=(2-1)*(3-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.3
N = 140.5993
df = 2
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
r
r pwr.chisq.test(w=0.3,df=(2-1)*(4-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.3
N = 157.461
df = 3
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
r
r pwr.chisq.test(w=0.3,df=(2-1)*(5-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.3
N = 171.1672
df = 4
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
r
r pwr.chisq.test(w=0.2,df=(2-1)*(3-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.2
N = 316.3484
df = 2
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
r
r pwr.chisq.test(w=0.2,df=(2-1)*(4-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.2
N = 354.2872
df = 3
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
r
r pwr.chisq.test(w=0.2,df=(2-1)*(5-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.2
N = 385.1263
df = 4
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
r
r pwr.chisq.test(w=0.1,df=(2-1)*(3-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.1
N = 1265.394
df = 2
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
r
r pwr.chisq.test(w=0.1,df=(2-1)*(4-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.1
N = 1417.149
df = 3
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
r
r pwr.chisq.test(w=0.1,df=(2-1)*(5-1),sig.level=0.05, power=0.90)
Chi squared power calculation
w = 0.1
N = 1540.505
df = 4
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations