TCC AMAN - apoio para cad Ederson

ReferĂȘncia: Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ: Lawrence Erlbaum. 

book: Cohen, J. (1988)

library(pwr)
library(pwr2)

Usage pwr.chisq.test(w = NULL, N = NULL, df = NULL, sig.level = 0.05, power = NULL) Arguments

  w 
  Effect size
  N 
  Total number of observations
  df    
  degree of freedom (depends on the chosen test)
  sig.level 
  Significance level (Type I error probability)
  power 
  Power of test (1 minus Type II error probability)

see this chapter for details:

tamanho de amostra para o TCC

pwr.chisq.test(w=0.25,df=(2-1)*(2-1),sig.level=0.01, power=0.95)

     Chi squared power calculation 

              w = 0.25
              N = 285.0266
             df = 1
      sig.level = 0.01
          power = 0.95

NOTE: N is the number of observations

opcional

rr # alguns tamanhos de amostra pwr.chisq.test(w=0.3,df=(2-1)*(3-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.3
              N = 140.5993
             df = 2
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations

rr pwr.chisq.test(w=0.3,df=(2-1)*(4-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.3
              N = 157.461
             df = 3
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations

rr pwr.chisq.test(w=0.3,df=(2-1)*(5-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.3
              N = 171.1672
             df = 4
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations

rr pwr.chisq.test(w=0.2,df=(2-1)*(3-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.2
              N = 316.3484
             df = 2
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations

rr pwr.chisq.test(w=0.2,df=(2-1)*(4-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.2
              N = 354.2872
             df = 3
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations

rr pwr.chisq.test(w=0.2,df=(2-1)*(5-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.2
              N = 385.1263
             df = 4
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations

rr pwr.chisq.test(w=0.1,df=(2-1)*(3-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.1
              N = 1265.394
             df = 2
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations

rr pwr.chisq.test(w=0.1,df=(2-1)*(4-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.1
              N = 1417.149
             df = 3
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations

rr pwr.chisq.test(w=0.1,df=(2-1)*(5-1),sig.level=0.05, power=0.90)


     Chi squared power calculation 

              w = 0.1
              N = 1540.505
             df = 4
      sig.level = 0.05
          power = 0.9

NOTE: N is the number of observations
LS0tDQp0aXRsZTogIlNhbXBsZSBzaXplIGNhbGN1bGF0aW9ucyBmb3IgY2hpLXNxdWFyZWQgdGVzdHMgLSBbUGVyc29uYWwgQmxvZ10oYWVkYmVzdC53b3JkcHJlc3MuY29tKSINCmF1dGhvcjogIkxlb25pLCBSLiBDLiBQcm9mIERyLiAtIE1pbGl0YXJ5IEFjYWRlbXkgT2YgQWd1bGhhcyBOZWdyYXMgKEFNQU4pIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyBUQ0MgQU1BTiAtIGFwb2lvIHBhcmEgY2FkIEVkZXJzb24NCg0KICAgIFJlZmVyw6puY2lhOiBDb2hlbiwgSi4gKDE5ODgpLiBTdGF0aXN0aWNhbCBwb3dlciBhbmFseXNpcyBmb3IgdGhlIGJlaGF2aW9yYWwgc2NpZW5jZXMgKDJuZCBlZC4pLiBIaWxsc2RhbGUsTko6IExhd3JlbmNlIEVybGJhdW0uIA0KICAgIA0KW2Jvb2s6ICBDb2hlbiwgSi4gKDE5ODgpIF0oaHR0cHM6Ly93d3cuYW1hem9uLmNvbS9TdGF0aXN0aWNhbC1Qb3dlci1BbmFseXNpcy1CZWhhdmlvcmFsLVNjaWVuY2VzL2RwLzA4MDU4MDI4MzUpDQoNCg0KYGBge3J9DQpsaWJyYXJ5KHB3cikNCmxpYnJhcnkocHdyMikNCj9wd3IuY2hpc3EudGVzdA0KYGBgDQoNCj4gVXNhZ2UNCnB3ci5jaGlzcS50ZXN0KHcgPSBOVUxMLCBOID0gTlVMTCwgZGYgPSBOVUxMLCBzaWcubGV2ZWwgPSAwLjA1LCBwb3dlciA9IE5VTEwpDQpBcmd1bWVudHMNCg0KICAgICAgdwkNCiAgICAgIEVmZmVjdCBzaXplDQogICAgICBOCQ0KICAgICAgVG90YWwgbnVtYmVyIG9mIG9ic2VydmF0aW9ucw0KICAgICAgZGYJDQogICAgICBkZWdyZWUgb2YgZnJlZWRvbSAoZGVwZW5kcyBvbiB0aGUgY2hvc2VuIHRlc3QpDQogICAgICBzaWcubGV2ZWwJDQogICAgICBTaWduaWZpY2FuY2UgbGV2ZWwgKFR5cGUgSSBlcnJvciBwcm9iYWJpbGl0eSkNCiAgICAgIHBvd2VyCQ0KICAgICAgUG93ZXIgb2YgdGVzdCAoMSBtaW51cyBUeXBlIElJIGVycm9yIHByb2JhYmlsaXR5KQ0KDQoNCiBbc2VlIHRoaXMgY2hhcHRlciBmb3IgZGV0YWlsczogXShodHRwczovL3d3dy5nb29nbGUuY29tLmJyL3VybD9zYT10JnJjdD1qJnE9JmVzcmM9cyZzb3VyY2U9d2ViJmNkPTE3JnZlZD0wYWhVS0V3aW5oZGFIMFpqVUFoVUZGaXdLSFJibkRsZzRDaEFXQ0ZNd0JnJnVybD1odHRwJTNBJTJGJTJGZ2VvZ3JhcGh5LnVudC5lZHUlMkZ+d29sdmVydG9uJTJGQ2hpU3F1YXJlLnBkZiZ1c2c9QUZRakNOR2lkUlpqS3RVcXJwRnE0bE9RVTc4US15YXBTdyZzaWcyPWE3ZEV5WjV4aklvTDNyVjZVN0NjencmY2FkPXJqYSkgDQoNCiMgdGFtYW5obyBkZSBhbW9zdHJhIHBhcmEgbyBUQ0MNCg0KYGBge3J9DQpwd3IuY2hpc3EudGVzdCh3PTAuMjUsZGY9KDItMSkqKDItMSksc2lnLmxldmVsPTAuMDEsIHBvd2VyPTAuOTUpDQoNCmBgYA0KDQojIG9wY2lvbmFsDQpgYGB7cn0NCiMgT3V0cm9zdGFtYW5ob3MgZGUgYW1vc3RyYQ0KDQpwd3IuY2hpc3EudGVzdCh3PTAuMyxkZj0oMi0xKSooMy0xKSxzaWcubGV2ZWw9MC4wNSwgcG93ZXI9MC45MCkNCnB3ci5jaGlzcS50ZXN0KHc9MC4zLGRmPSgyLTEpKig0LTEpLHNpZy5sZXZlbD0wLjA1LCBwb3dlcj0wLjkwKQ0KcHdyLmNoaXNxLnRlc3Qodz0wLjMsZGY9KDItMSkqKDUtMSksc2lnLmxldmVsPTAuMDUsIHBvd2VyPTAuOTApDQoNCnB3ci5jaGlzcS50ZXN0KHc9MC4yLGRmPSgyLTEpKigzLTEpLHNpZy5sZXZlbD0wLjA1LCBwb3dlcj0wLjkwKQ0KcHdyLmNoaXNxLnRlc3Qodz0wLjIsZGY9KDItMSkqKDQtMSksc2lnLmxldmVsPTAuMDUsIHBvd2VyPTAuOTApDQpwd3IuY2hpc3EudGVzdCh3PTAuMixkZj0oMi0xKSooNS0xKSxzaWcubGV2ZWw9MC4wNSwgcG93ZXI9MC45MCkNCg0KcHdyLmNoaXNxLnRlc3Qodz0wLjEsZGY9KDItMSkqKDMtMSksc2lnLmxldmVsPTAuMDUsIHBvd2VyPTAuOTApDQpwd3IuY2hpc3EudGVzdCh3PTAuMSxkZj0oMi0xKSooNC0xKSxzaWcubGV2ZWw9MC4wNSwgcG93ZXI9MC45MCkNCnB3ci5jaGlzcS50ZXN0KHc9MC4xLGRmPSgyLTEpKig1LTEpLHNpZy5sZXZlbD0wLjA1LCBwb3dlcj0wLjkwKQ0KYGBgDQoNCg==