clear
cd "E:\Econ 107\LAB7\data"
use seatbelt.dta
\[y_{it}=\alpha + \beta x_{it}+u_{it}\]
gen logincome=ln(income)
reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age, robust
Outputs:
Linear regression Number of obs = 556
F(7, 548) = 90.96
Prob > F = 0.0000
R-squared = 0.5493
Root MSE = .0034
------------------------------------------------------------------------------
| Robust
fatalityrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sb_useage | .0040684 .0012323 3.30 0.001 .0016478 .0064889
speed65 | .0001479 .0004076 0.36 0.717 -.0006527 .0009486
speed70 | .0024045 .0004721 5.09 0.000 .0014771 .0033319
ba08 | -.0019246 .0003612 -5.33 0.000 -.002634 -.0012151
drinkage21 | .0000799 .0009872 0.08 0.936 -.0018593 .002019
logincome | -.0181444 .001086 -16.71 0.000 -.0202776 -.0160111
age | -7.22e-06 .0001644 -0.04 0.965 -.0003302 .0003158
_cons | .1965469 .0092503 21.25 0.000 .1783766 .2147172
------------------------------------------------------------------------------
The estimated coefficient on seat belt usage is positive. This suggests that seat belt usage leads to an increase in the fatality rate.
\[y_{it}=\alpha_i + \beta x_{it}+u_{it}\]
reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.fips, robust
Outputs:
i.fips _Ifips_1-56 (naturally coded; _Ifips_1 omitted)
Linear regression Number of obs = 556
F(57, 498) = 90.12
Prob > F = 0.0000
R-squared = 0.8867
Root MSE = .00179
------------------------------------------------------------------------------
| Robust
fatalityrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sb_useage | -.0057748 .0013175 -4.38 0.000 -.0083634 -.0031862
speed65 | -.000425 .0003735 -1.14 0.256 -.0011589 .0003089
speed70 | .0012333 .0003169 3.89 0.000 .0006106 .0018559
ba08 | -.0013775 .0003296 -4.18 0.000 -.0020251 -.0007298
drinkage21 | .0007453 .0006444 1.16 0.248 -.0005208 .0020115
logincome | -.0135144 .0016114 -8.39 0.000 -.0166805 -.0103483
age | .0009787 .0004957 1.97 0.049 4.69e-06 .0019527
_Ifips_2 | .0100326 .0035745 2.81 0.005 .0030097 .0170556
_Ifips_4 | .0022479 .0008314 2.70 0.007 .0006144 .0038814
_Ifips_5 | .0012263 .0007868 1.56 0.120 -.0003195 .0027722
_Ifips_6 | .0015822 .0014353 1.10 0.271 -.0012377 .0044021
_Ifips_8 | -.000033 .0011743 -0.03 0.978 -.0023403 .0022742
_Ifips_9 | -.0041954 .0010154 -4.13 0.000 -.0061903 -.0022004
_Ifips_10 | -.0007464 .0010806 -0.69 0.490 -.0028695 .0013766
_Ifips_11 | .0005718 .0013871 0.41 0.680 -.0021535 .003297
_Ifips_12 | .0009356 .001521 0.62 0.539 -.0020527 .003924
_Ifips_13 | -.0006633 .0013075 -0.51 0.612 -.0032322 .0019056
_Ifips_15 | -.0006398 .0012663 -0.51 0.614 -.0031277 .0018481
_Ifips_16 | .0026381 .001335 1.98 0.049 .0000152 .005261
_Ifips_17 | -.0013855 .0009304 -1.49 0.137 -.0032136 .0004425
_Ifips_18 | -.0040948 .0007695 -5.32 0.000 -.0056067 -.0025829
_Ifips_19 | -.0026051 .0008317 -3.13 0.002 -.0042391 -.0009711
_Ifips_20 | -.0017657 .0006931 -2.55 0.011 -.0031275 -.0004039
_Ifips_21 | -.0021878 .0006634 -3.30 0.001 -.0034913 -.0008844
_Ifips_22 | .0024998 .0011649 2.15 0.032 .000211 .0047885
_Ifips_23 | -.0059608 .0007634 -7.81 0.000 -.0074608 -.0044609
_Ifips_24 | -.0008352 .0010262 -0.81 0.416 -.0028514 .0011811
_Ifips_25 | -.0079672 .0008881 -8.97 0.000 -.0097121 -.0062223
_Ifips_26 | -.0018792 .0008739 -2.15 0.032 -.0035963 -.0001621
_Ifips_27 | -.0057477 .000932 -6.17 0.000 -.0075787 -.0039166
_Ifips_28 | .0038804 .0007906 4.91 0.000 .002327 .0054337
_Ifips_29 | -.0013953 .0008173 -1.71 0.088 -.003001 .0002105
_Ifips_30 | .0012472 .0008788 1.42 0.156 -.0004795 .0029738
_Ifips_31 | -.0041884 .0007177 -5.84 0.000 -.0055986 -.0027782
_Ifips_32 | .0066381 .0011669 5.69 0.000 .0043455 .0089308
_Ifips_33 | -.0041284 .0010376 -3.98 0.000 -.006167 -.0020898
_Ifips_34 | -.0046699 .0009803 -4.76 0.000 -.0065961 -.0027438
_Ifips_35 | .0046203 .0013391 3.45 0.001 .0019893 .0072512
_Ifips_36 | -.0006631 .0008814 -0.75 0.452 -.0023947 .0010685
_Ifips_37 | .0014575 .0008867 1.64 0.101 -.0002846 .0031996
_Ifips_38 | -.0093883 .0008365 -11.22 0.000 -.0110318 -.0077448
_Ifips_39 | -.00464 .0007117 -6.52 0.000 -.0060384 -.0032416
_Ifips_40 | -.0054662 .0006977 -7.83 0.000 -.006837 -.0040953
_Ifips_41 | .0000348 .0008248 0.04 0.966 -.0015856 .0016553
_Ifips_42 | -.003881 .0009815 -3.95 0.000 -.0058093 -.0019527
_Ifips_44 | -.011189 .0010029 -11.16 0.000 -.0131595 -.0092186
_Ifips_45 | .0026997 .0009462 2.85 0.005 .0008407 .0045588
_Ifips_46 | -.0028029 .0007661 -3.66 0.000 -.0043081 -.0012978
_Ifips_47 | .0011872 .0006062 1.96 0.051 -3.95e-06 .0023783
_Ifips_48 | .0006296 .0015091 0.42 0.677 -.0023354 .0035945
_Ifips_49 | .0003764 .0027246 0.14 0.890 -.0049768 .0057296
_Ifips_50 | -.0031505 .0008039 -3.92 0.000 -.00473 -.001571
_Ifips_51 | -.00316 .0009348 -3.38 0.001 -.0049966 -.0013234
_Ifips_53 | -.0036127 .0009087 -3.98 0.000 -.005398 -.0018273
_Ifips_54 | -.0016792 .0014689 -1.14 0.254 -.0045652 .0012069
_Ifips_55 | -.0051829 .0006722 -7.71 0.000 -.0065036 -.0038621
_Ifips_56 | .0007427 .0013262 0.56 0.576 -.001863 .0033483
_cons | .1223864 .0118767 10.30 0.000 .0990518 .1457211
------------------------------------------------------------------------------
Another method to estimate robust standard error:
reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.fips, cluster(fips)
Outputs:
i.fips _Ifips_1-56 (naturally coded; _Ifips_1 omitted)
Linear regression Number of obs = 556
F(6, 50) = .
Prob > F = .
R-squared = 0.8867
Root MSE = .00179
(Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
| Robust
fatalityrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sb_useage | -.0057748 .001751 -3.30 0.002 -.0092919 -.0022577
speed65 | -.000425 .0004778 -0.89 0.378 -.0013847 .0005346
speed70 | .0012333 .0003654 3.38 0.001 .0004994 .0019671
ba08 | -.0013775 .0003935 -3.50 0.001 -.0021677 -.0005872
drinkage21 | .0007453 .0007536 0.99 0.327 -.0007684 .002259
logincome | -.0135144 .0025018 -5.40 0.000 -.0185394 -.0084894
age | .0009787 .0007826 1.25 0.217 -.0005933 .0025507
_Ifips_2 | .0100326 .0046542 2.16 0.036 .0006843 .0193809
_Ifips_4 | .0022479 .0006823 3.29 0.002 .0008774 .0036184
_Ifips_5 | .0012263 .0006766 1.81 0.076 -.0001327 .0025854
_Ifips_6 | .0015822 .0019286 0.82 0.416 -.0022914 .0054559
_Ifips_8 | -.000033 .0015549 -0.02 0.983 -.0031561 .0030901
_Ifips_9 | -.0041954 .0011113 -3.78 0.000 -.0064274 -.0019633
_Ifips_10 | -.0007464 .0008742 -0.85 0.397 -.0025023 .0010095
_Ifips_11 | .0005718 .0010655 0.54 0.594 -.0015683 .0027118
_Ifips_12 | .0009356 .0021564 0.43 0.666 -.0033956 .0052668
_Ifips_13 | -.0006633 .0016197 -0.41 0.684 -.0039166 .00259
_Ifips_15 | -.0006398 .0012935 -0.49 0.623 -.0032378 .0019582
_Ifips_16 | .0026381 .001448 1.82 0.074 -.0002703 .0055466
_Ifips_17 | -.0013855 .0009078 -1.53 0.133 -.0032089 .0004378
_Ifips_18 | -.0040948 .0004523 -9.05 0.000 -.0050033 -.0031863
_Ifips_19 | -.0026051 .0007147 -3.65 0.001 -.0040406 -.0011697
_Ifips_20 | -.0017657 .000348 -5.07 0.000 -.0024647 -.0010667
_Ifips_21 | -.0021878 .0001678 -13.04 0.000 -.0025249 -.0018508
_Ifips_22 | .0024998 .0013779 1.81 0.076 -.0002678 .0052673
_Ifips_23 | -.0059608 .0006398 -9.32 0.000 -.0072458 -.0046758
_Ifips_24 | -.0008352 .0011347 -0.74 0.465 -.0031142 .0014439
_Ifips_25 | -.0079672 .0009074 -8.78 0.000 -.0097898 -.0061445
_Ifips_26 | -.0018792 .0008724 -2.15 0.036 -.0036314 -.000127
_Ifips_27 | -.0057477 .0009287 -6.19 0.000 -.0076131 -.0038822
_Ifips_28 | .0038804 .0007184 5.40 0.000 .0024374 .0053233
_Ifips_29 | -.0013953 .0003414 -4.09 0.000 -.0020809 -.0007096
_Ifips_30 | .0012472 .0003392 3.68 0.001 .0005659 .0019284
_Ifips_31 | -.0041884 .0002797 -14.97 0.000 -.0047502 -.0036266
_Ifips_32 | .0066381 .0010135 6.55 0.000 .0046025 .0086737
_Ifips_33 | -.0041284 .001072 -3.85 0.000 -.0062816 -.0019752
_Ifips_34 | -.0046699 .0009271 -5.04 0.000 -.0065321 -.0028077
_Ifips_35 | .0046203 .0016093 2.87 0.006 .0013878 .0078527
_Ifips_36 | -.0006631 .0006996 -0.95 0.348 -.0020682 .0007421
_Ifips_37 | .0014575 .0003775 3.86 0.000 .0006994 .0022157
_Ifips_38 | -.0093883 .0004502 -20.86 0.000 -.0102925 -.0084841
_Ifips_39 | -.00464 .0003533 -13.14 0.000 -.0053495 -.0039305
_Ifips_40 | -.0054662 .0002129 -25.67 0.000 -.0058939 -.0050385
_Ifips_41 | .0000348 .0003693 0.09 0.925 -.000707 .0007767
_Ifips_42 | -.003881 .0012139 -3.20 0.002 -.0063191 -.0014429
_Ifips_44 | -.011189 .0010421 -10.74 0.000 -.0132822 -.0090959
_Ifips_45 | .0026997 .0005788 4.66 0.000 .0015372 .0038623
_Ifips_46 | -.0028029 .0003933 -7.13 0.000 -.0035929 -.002013
_Ifips_47 | .0011872 .0003186 3.73 0.000 .0005472 .0018272
_Ifips_48 | .0006296 .0021336 0.30 0.769 -.0036558 .0049149
_Ifips_49 | .0003764 .0041335 0.09 0.928 -.0079259 .0086787
_Ifips_50 | -.0031505 .0005095 -6.18 0.000 -.0041738 -.0021272
_Ifips_51 | -.00316 .0010105 -3.13 0.003 -.0051896 -.0011305
_Ifips_53 | -.0036127 .0010083 -3.58 0.001 -.005638 -.0015874
_Ifips_54 | -.0016792 .0015892 -1.06 0.296 -.0048711 .0015128
_Ifips_55 | -.0051829 .0004405 -11.77 0.000 -.0060676 -.0042981
_Ifips_56 | .0007427 .0014742 0.50 0.617 -.0022184 .0037037
_cons | .1223864 .0193546 6.32 0.000 .0835116 .1612613
------------------------------------------------------------------------------
If we do not need the estimated value of each \(\alpha_i\):
areg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age, cluster(fips) absorb(fips)
Outputs:
Linear regression, absorbing indicators Number of obs = 556
F( 7, 50) = 87.90
Prob > F = 0.0000
R-squared = 0.8867
Adj R-squared = 0.8737
Root MSE = 0.0018
(Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
| Robust
fatalityrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sb_useage | -.0057748 .001751 -3.30 0.002 -.0092919 -.0022577
speed65 | -.000425 .0004778 -0.89 0.378 -.0013847 .0005346
speed70 | .0012333 .0003654 3.38 0.001 .0004994 .0019671
ba08 | -.0013775 .0003935 -3.50 0.001 -.0021677 -.0005872
drinkage21 | .0007453 .0007536 0.99 0.327 -.0007684 .002259
logincome | -.0135144 .0025018 -5.40 0.000 -.0185394 -.0084894
age | .0009787 .0007826 1.25 0.217 -.0005933 .0025507
_cons | .1209958 .0193262 6.26 0.000 .082178 .1598137
-------------+----------------------------------------------------------------
fips | absorbed (51 categories)
The results change when state effects are included. The coefficient on seat belt usage is now negative and the coefficient is statistically significant. The estimated value of sb_useage is 0.0057.
States with more dangerous driving conditions (and a higher fatality rate) also have more people wearing seat belts. Thus (1) suffers from omitted variable bias.
\[y_{it}=\alpha_i + \alpha_t + \beta x_{it}+u_{it}\]
reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.fips i.year, cluster(fips)
Outputs:
i.fips _Ifips_1-56 (naturally coded; _Ifips_1 omitted)
i.year _Iyear_1983-1997 (naturally coded; _Iyear_1983 omitted)
Linear regression Number of obs = 556
F(20, 50) = .
Prob > F = .
R-squared = 0.9098
Root MSE = .00162
(Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
| Robust
fatalityrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sb_useage | -.0037186 .0015246 -2.44 0.018 -.0067808 -.0006563
speed65 | -.0007833 .0006093 -1.29 0.205 -.0020071 .0004405
speed70 | .0008042 .0004803 1.67 0.100 -.0001605 .0017688
ba08 | -.0008225 .0004656 -1.77 0.083 -.0017577 .0001127
drinkage21 | -.0011337 .0006534 -1.74 0.089 -.0024461 .0001787
logincome | .0062643 .0070367 0.89 0.378 -.0078693 .0203979
age | .001318 .0007287 1.81 0.076 -.0001455 .0027816
_Ifips_2 | .006243 .0042864 1.46 0.152 -.0023666 .0148526
_Ifips_4 | .0010385 .0007334 1.42 0.163 -.0004346 .0025115
_Ifips_5 | .0019924 .0006749 2.95 0.005 .0006367 .003348
_Ifips_6 | -.0046545 .0026128 -1.78 0.081 -.0099023 .0005934
_Ifips_8 | -.0046086 .0020453 -2.25 0.029 -.0087167 -.0005005
_Ifips_9 | -.0158628 .0036944 -4.29 0.000 -.0232833 -.0084423
_Ifips_10 | -.0073367 .0022963 -3.19 0.002 -.011949 -.0027243
_Ifips_11 | -.0108581 .0039561 -2.74 0.008 -.0188042 -.002912
_Ifips_12 | -.0047175 .0027592 -1.71 0.094 -.0102595 .0008244
_Ifips_13 | -.002997 .0015928 -1.88 0.066 -.0061962 .0002022
_Ifips_15 | -.007201 .0018451 -3.90 0.000 -.0109069 -.003495
_Ifips_16 | .003059 .0013709 2.23 0.030 .0003055 .0058125
_Ifips_17 | -.0073873 .0020735 -3.56 0.001 -.011552 -.0032226
_Ifips_18 | -.006817 .0008814 -7.73 0.000 -.0085874 -.0050466
_Ifips_19 | -.0057302 .0010414 -5.50 0.000 -.0078219 -.0036385
_Ifips_20 | -.0054187 .0012191 -4.44 0.000 -.0078674 -.00297
_Ifips_21 | -.0014577 .0002027 -7.19 0.000 -.0018648 -.0010506
_Ifips_22 | .0031179 .0013502 2.31 0.025 .0004059 .0058298
_Ifips_23 | -.0081397 .00105 -7.75 0.000 -.0102486 -.0060307
_Ifips_24 | -.0083354 .0025522 -3.27 0.002 -.0134617 -.003209
_Ifips_25 | -.0163695 .0029061 -5.63 0.000 -.0222066 -.0105324
_Ifips_26 | -.0060909 .0015497 -3.93 0.000 -.0092036 -.0029783
_Ifips_27 | -.0107385 .0017307 -6.20 0.000 -.0142148 -.0072622
_Ifips_28 | .0076234 .0012895 5.91 0.000 .0050335 .0102134
_Ifips_29 | -.004406 .0010682 -4.12 0.000 -.0065515 -.0022604
_Ifips_30 | .0008326 .0003791 2.20 0.033 .0000712 .0015939
_Ifips_31 | -.0069169 .0009749 -7.09 0.000 -.0088751 -.0049586
_Ifips_32 | .0012562 .0019356 0.65 0.519 -.0026315 .005144
_Ifips_33 | -.0107429 .0023232 -4.62 0.000 -.0154091 -.0060768
_Ifips_34 | -.0146688 .0031854 -4.61 0.000 -.0210669 -.0082708
_Ifips_35 | .005655 .0015416 3.67 0.001 .0025586 .0087514
_Ifips_36 | -.0093885 .0026295 -3.57 0.001 -.01467 -.004107
_Ifips_37 | -.0012724 .0007679 -1.66 0.104 -.0028147 .00027
_Ifips_38 | -.0090427 .0003947 -22.91 0.000 -.0098356 -.0082499
_Ifips_39 | -.008499 .0011757 -7.23 0.000 -.0108605 -.0061375
_Ifips_40 | -.0057419 .0002094 -27.42 0.000 -.0061625 -.0053214
_Ifips_41 | -.0039604 .001228 -3.23 0.002 -.006427 -.0014939
_Ifips_42 | -.0095413 .0020478 -4.66 0.000 -.0136544 -.0054281
_Ifips_44 | -.0162439 .0019085 -8.51 0.000 -.0200773 -.0124105
_Ifips_45 | .0028703 .0005825 4.93 0.000 .0017002 .0040403
_Ifips_46 | -.0026968 .0003757 -7.18 0.000 -.0034514 -.0019422
_Ifips_47 | -.0009243 .0007277 -1.27 0.210 -.0023859 .0005373
_Ifips_48 | -.0013714 .0020247 -0.68 0.501 -.0054381 .0026953
_Ifips_49 | .0027227 .0038473 0.71 0.482 -.0050048 .0104502
_Ifips_50 | -.0062963 .001069 -5.89 0.000 -.0084435 -.0041491
_Ifips_51 | -.0088905 .001912 -4.65 0.000 -.0127308 -.0050502
_Ifips_53 | -.0086983 .0017761 -4.90 0.000 -.0122657 -.0051309
_Ifips_54 | -.0009197 .0014567 -0.63 0.531 -.0038455 .0020061
_Ifips_55 | -.008633 .00109 -7.92 0.000 -.0108223 -.0064437
_Ifips_56 | -.0010498 .0014509 -0.72 0.473 -.0039641 .0018645
_Iyear_1984 | -.0004319 .0014475 -0.30 0.767 -.0033392 .0024754
_Iyear_1985 | -.0010707 .001853 -0.58 0.566 -.0047925 .0026512
_Iyear_1986 | -.0005777 .002109 -0.27 0.785 -.0048138 .0036583
_Iyear_1987 | -.0008722 .0026195 -0.33 0.741 -.0061336 .0043892
_Iyear_1988 | -.001885 .0030219 -0.62 0.536 -.0079547 .0041847
_Iyear_1989 | -.0041766 .0034205 -1.22 0.228 -.0110468 .0026936
_Iyear_1990 | -.005266 .0037186 -1.42 0.163 -.012735 .0022031
_Iyear_1991 | -.0066622 .0039487 -1.69 0.098 -.0145935 .001269
_Iyear_1992 | -.008518 .0041863 -2.03 0.047 -.0169265 -.0001095
_Iyear_1993 | -.0089399 .0044105 -2.03 0.048 -.0177988 -.0000811
_Iyear_1994 | -.0096297 .0048249 -2.00 0.051 -.0193207 .0000613
_Iyear_1995 | -.0101123 .0051428 -1.97 0.055 -.0204419 .0002172
_Iyear_1996 | -.0110766 .0054713 -2.02 0.048 -.022066 -.0000871
_Iyear_1997 | -.0116075 .0058129 -2.00 0.051 -.0232831 .0000681
_cons | -.0730503 .0686829 -1.06 0.293 -.2110039 .0649033
------------------------------------------------------------------------------
Tidier version:
areg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.year, cluster(fips) absorb(fips)
Outputs:
i.year _Iyear_1983-1997 (naturally coded; _Iyear_1983 omitted)
Linear regression, absorbing indicators Number of obs = 556
F( 21, 50) = 47.41
Prob > F = 0.0000
R-squared = 0.9098
Adj R-squared = 0.8966
Root MSE = 0.0016
(Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
| Robust
fatalityrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sb_useage | -.0037186 .0015246 -2.44 0.018 -.0067808 -.0006563
speed65 | -.0007833 .0006093 -1.29 0.205 -.0020071 .0004405
speed70 | .0008042 .0004803 1.67 0.100 -.0001605 .0017688
ba08 | -.0008225 .0004656 -1.77 0.083 -.0017577 .0001127
drinkage21 | -.0011337 .0006534 -1.74 0.089 -.0024461 .0001787
logincome | .0062643 .0070367 0.89 0.378 -.0078693 .0203979
age | .001318 .0007287 1.81 0.076 -.0001455 .0027816
_Iyear_1984 | -.0004319 .0014475 -0.30 0.767 -.0033392 .0024754
_Iyear_1985 | -.0010707 .001853 -0.58 0.566 -.0047925 .0026512
_Iyear_1986 | -.0005777 .002109 -0.27 0.785 -.0048138 .0036583
_Iyear_1987 | -.0008722 .0026195 -0.33 0.741 -.0061336 .0043892
_Iyear_1988 | -.001885 .0030219 -0.62 0.536 -.0079547 .0041847
_Iyear_1989 | -.0041766 .0034205 -1.22 0.228 -.0110468 .0026936
_Iyear_1990 | -.005266 .0037186 -1.42 0.163 -.012735 .0022031
_Iyear_1991 | -.0066622 .0039487 -1.69 0.098 -.0145935 .001269
_Iyear_1992 | -.008518 .0041863 -2.03 0.047 -.0169265 -.0001095
_Iyear_1993 | -.0089399 .0044105 -2.03 0.048 -.0177988 -.0000811
_Iyear_1994 | -.0096297 .0048249 -2.00 0.051 -.0193207 .0000613
_Iyear_1995 | -.0101123 .0051428 -1.97 0.055 -.0204419 .0002172
_Iyear_1996 | -.0110766 .0054713 -2.02 0.048 -.022066 -.0000871
_Iyear_1997 | -.0116075 .0058129 -2.00 0.051 -.0232831 .0000681
_cons | -.0779904 .0697046 -1.12 0.269 -.2179962 .0620155
-------------+----------------------------------------------------------------
fips | absorbed (51 categories)
Test effect:
reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.year i.fips, cluster(fips)
testparm i.year
Outputs:
( 1) 1984.year = 0
( 2) 1985.year = 0
( 3) 1986.year = 0
( 4) 1987.year = 0
( 5) 1988.year = 0
( 6) 1989.year = 0
( 7) 1990.year = 0
( 8) 1991.year = 0
( 9) 1992.year = 0
(10) 1993.year = 0
(11) 1994.year = 0
(12) 1995.year = 0
(13) 1996.year = 0
(14) 1997.year = 0
F( 14, 50) = 8.90
Prob > F = 0.0000
i.year _Iyear_1983-1997 (naturally coded; _Iyear_1983 omitted)
Linear regression, absorbing indicators Number of obs = 556
F( 21, 50) = 47.41
Prob > F = 0.0000
R-squared = 0.9098
Adj R-squared = 0.8966
Root MSE = 0.0016
(Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
| Robust
fatalityrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sb_useage | -.0037186 .0015246 -2.44 0.018 -.0067808 -.0006563
speed65 | -.0007833 .0006093 -1.29 0.205 -.0020071 .0004405
speed70 | .0008042 .0004803 1.67 0.100 -.0001605 .0017688
ba08 | -.0008225 .0004656 -1.77 0.083 -.0017577 .0001127
drinkage21 | -.0011337 .0006534 -1.74 0.089 -.0024461 .0001787
logincome | .0062643 .0070367 0.89 0.378 -.0078693 .0203979
age | .001318 .0007287 1.81 0.076 -.0001455 .0027816
-------------+----------------------------------------------------------------
fips | absorbed (51 categories)
\[fatality~rate=-0.00372\times sb~useage+...\]
A 38% increase in seat belt usage from 0.52 to 0.90 is estimated to lower the fatality rate by \(0.00372\times 0.38=0.0014\) fatalities per million traffic miles. The average number of traffic miles per year per state in the sample is 41,447. For a state with the average number of traffic miles, the number of fatalities prevented is \(0.0014\times 41,447=58\) fatalities.
areg sb_useage primary secondary speed65 speed70 ba08 drinkage logincome age i.year, cluster(fips) absorb(fips)
Outputs:
Linear regression, absorbing indicators Number of obs = 556
F( 22, 50) = 456.16
Prob > F = 0.0000
R-squared = 0.9016
Adj R-squared = 0.8869
Root MSE = 0.0572
(Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
| Robust
sb_useage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
primary | .2055968 .0243489 8.44 0.000 .1566907 .254503
secondary | .1085184 .0140858 7.70 0.000 .0802262 .1368106
speed65 | .0228485 .0215529 1.06 0.294 -.0204417 .0661388
speed70 | .0120424 .0216313 0.56 0.580 -.0314054 .0554902
ba08 | .0037584 .018507 0.20 0.840 -.033414 .0409307
drinkage21 | .0107149 .0285425 0.38 0.709 -.0466144 .0680442
logincome | .0582708 .269387 0.22 0.830 -.482809 .5993506
age | .0138232 .0243016 0.57 0.572 -.034988 .0626345
|
year |
1984 | .0041178 .0299885 0.14 0.891 -.0561159 .0643514
1985 | .0575169 .0452117 1.27 0.209 -.0332935 .1483273
1986 | .1073527 .0579004 1.85 0.070 -.0089437 .223649
1987 | .1240647 .0810099 1.53 0.132 -.0386485 .2867779
1988 | .1390924 .1025384 1.36 0.181 -.0668621 .3450468
1989 | .1702325 .1186812 1.43 0.158 -.0681457 .4086106
1990 | .1897753 .1358066 1.40 0.168 -.0830004 .462551
1991 | .2370697 .143986 1.65 0.106 -.0521347 .5262741
1992 | .2633971 .1598977 1.65 0.106 -.057767 .5845612
1993 | .2824192 .1717693 1.64 0.106 -.0625896 .6274279
1994 | .2983722 .1826111 1.63 0.109 -.0684131 .6651575
1995 | .2959081 .1946357 1.52 0.135 -.0950292 .6868454
1996 | .2875641 .2086531 1.38 0.174 -.1315281 .7066562
1997 | .2977352 .2209318 1.35 0.184 -.1460193 .7414896
|
_cons | -.893022 2.775641 -0.32 0.749 -6.46806 4.682016
-------------+----------------------------------------------------------------
fips | absorbed (51 categories)
The coefficients on primary and secondary are positive and significant. Primary enforcement is estimated to increase seat belt usage by 20.6% and secondary enforcement is estimated to increase seat belt usage by 10.9%.
\[sb~usage = 0.206\times primary+0.109\times secondary+...\]
New Jersey changed from secondary enforcement to primary enforcement, which means:
\[primary:0\rightarrow 1,secondary: 1\rightarrow 0\]
\[\Delta sb~usage = 0.206-0.109=0.094\]
This is predicted to reduce the fatality rate by \(0.00372\times 0.094= 0.00035\) fatalities per million traffic miles.
\[\Delta fatality~rate=-0.00372\times \Delta sb~useage=0.00372\times 0.094= 0.00035\]
The data set shows that there were 63,000 million traffic miles in 1997 in New Jersey. Assuming the same number of traffic miles in 2000 yields \(0.00035\times 63,000=22\) lives saved