E 10.2

Data: http://wps.aw.com/aw_stock_ie_3/178/45691/11696965.cw/

Clear and load dataset

clear
cd "E:\Econ 107\LAB7\data" 
use seatbelt.dta

(a)

\[y_{it}=\alpha + \beta x_{it}+u_{it}\]

gen logincome=ln(income)
reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age, robust

Outputs:

Linear regression                               Number of obs     =        556
                                                F(7, 548)         =      90.96
                                                Prob > F          =     0.0000
                                                R-squared         =     0.5493
                                                Root MSE          =      .0034

------------------------------------------------------------------------------
             |               Robust
fatalityrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   sb_useage |   .0040684   .0012323     3.30   0.001     .0016478    .0064889
     speed65 |   .0001479   .0004076     0.36   0.717    -.0006527    .0009486
     speed70 |   .0024045   .0004721     5.09   0.000     .0014771    .0033319
        ba08 |  -.0019246   .0003612    -5.33   0.000     -.002634   -.0012151
  drinkage21 |   .0000799   .0009872     0.08   0.936    -.0018593     .002019
   logincome |  -.0181444    .001086   -16.71   0.000    -.0202776   -.0160111
         age |  -7.22e-06   .0001644    -0.04   0.965    -.0003302    .0003158
       _cons |   .1965469   .0092503    21.25   0.000     .1783766    .2147172
------------------------------------------------------------------------------

The estimated coefficient on seat belt usage is positive. This suggests that seat belt usage leads to an increase in the fatality rate.

(b)

\[y_{it}=\alpha_i + \beta x_{it}+u_{it}\]

reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.fips, robust

Outputs:

i.fips            _Ifips_1-56         (naturally coded; _Ifips_1 omitted)

Linear regression                               Number of obs     =        556
                                                F(57, 498)        =      90.12
                                                Prob > F          =     0.0000
                                                R-squared         =     0.8867
                                                Root MSE          =     .00179

------------------------------------------------------------------------------
             |               Robust
fatalityrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   sb_useage |  -.0057748   .0013175    -4.38   0.000    -.0083634   -.0031862
     speed65 |   -.000425   .0003735    -1.14   0.256    -.0011589    .0003089
     speed70 |   .0012333   .0003169     3.89   0.000     .0006106    .0018559
        ba08 |  -.0013775   .0003296    -4.18   0.000    -.0020251   -.0007298
  drinkage21 |   .0007453   .0006444     1.16   0.248    -.0005208    .0020115
   logincome |  -.0135144   .0016114    -8.39   0.000    -.0166805   -.0103483
         age |   .0009787   .0004957     1.97   0.049     4.69e-06    .0019527
    _Ifips_2 |   .0100326   .0035745     2.81   0.005     .0030097    .0170556
    _Ifips_4 |   .0022479   .0008314     2.70   0.007     .0006144    .0038814
    _Ifips_5 |   .0012263   .0007868     1.56   0.120    -.0003195    .0027722
    _Ifips_6 |   .0015822   .0014353     1.10   0.271    -.0012377    .0044021
    _Ifips_8 |   -.000033   .0011743    -0.03   0.978    -.0023403    .0022742
    _Ifips_9 |  -.0041954   .0010154    -4.13   0.000    -.0061903   -.0022004
   _Ifips_10 |  -.0007464   .0010806    -0.69   0.490    -.0028695    .0013766
   _Ifips_11 |   .0005718   .0013871     0.41   0.680    -.0021535     .003297
   _Ifips_12 |   .0009356    .001521     0.62   0.539    -.0020527     .003924
   _Ifips_13 |  -.0006633   .0013075    -0.51   0.612    -.0032322    .0019056
   _Ifips_15 |  -.0006398   .0012663    -0.51   0.614    -.0031277    .0018481
   _Ifips_16 |   .0026381    .001335     1.98   0.049     .0000152     .005261
   _Ifips_17 |  -.0013855   .0009304    -1.49   0.137    -.0032136    .0004425
   _Ifips_18 |  -.0040948   .0007695    -5.32   0.000    -.0056067   -.0025829
   _Ifips_19 |  -.0026051   .0008317    -3.13   0.002    -.0042391   -.0009711
   _Ifips_20 |  -.0017657   .0006931    -2.55   0.011    -.0031275   -.0004039
   _Ifips_21 |  -.0021878   .0006634    -3.30   0.001    -.0034913   -.0008844
   _Ifips_22 |   .0024998   .0011649     2.15   0.032      .000211    .0047885
   _Ifips_23 |  -.0059608   .0007634    -7.81   0.000    -.0074608   -.0044609
   _Ifips_24 |  -.0008352   .0010262    -0.81   0.416    -.0028514    .0011811
   _Ifips_25 |  -.0079672   .0008881    -8.97   0.000    -.0097121   -.0062223
   _Ifips_26 |  -.0018792   .0008739    -2.15   0.032    -.0035963   -.0001621
   _Ifips_27 |  -.0057477    .000932    -6.17   0.000    -.0075787   -.0039166
   _Ifips_28 |   .0038804   .0007906     4.91   0.000      .002327    .0054337
   _Ifips_29 |  -.0013953   .0008173    -1.71   0.088     -.003001    .0002105
   _Ifips_30 |   .0012472   .0008788     1.42   0.156    -.0004795    .0029738
   _Ifips_31 |  -.0041884   .0007177    -5.84   0.000    -.0055986   -.0027782
   _Ifips_32 |   .0066381   .0011669     5.69   0.000     .0043455    .0089308
   _Ifips_33 |  -.0041284   .0010376    -3.98   0.000     -.006167   -.0020898
   _Ifips_34 |  -.0046699   .0009803    -4.76   0.000    -.0065961   -.0027438
   _Ifips_35 |   .0046203   .0013391     3.45   0.001     .0019893    .0072512
   _Ifips_36 |  -.0006631   .0008814    -0.75   0.452    -.0023947    .0010685
   _Ifips_37 |   .0014575   .0008867     1.64   0.101    -.0002846    .0031996
   _Ifips_38 |  -.0093883   .0008365   -11.22   0.000    -.0110318   -.0077448
   _Ifips_39 |    -.00464   .0007117    -6.52   0.000    -.0060384   -.0032416
   _Ifips_40 |  -.0054662   .0006977    -7.83   0.000     -.006837   -.0040953
   _Ifips_41 |   .0000348   .0008248     0.04   0.966    -.0015856    .0016553
   _Ifips_42 |   -.003881   .0009815    -3.95   0.000    -.0058093   -.0019527
   _Ifips_44 |   -.011189   .0010029   -11.16   0.000    -.0131595   -.0092186
   _Ifips_45 |   .0026997   .0009462     2.85   0.005     .0008407    .0045588
   _Ifips_46 |  -.0028029   .0007661    -3.66   0.000    -.0043081   -.0012978
   _Ifips_47 |   .0011872   .0006062     1.96   0.051    -3.95e-06    .0023783
   _Ifips_48 |   .0006296   .0015091     0.42   0.677    -.0023354    .0035945
   _Ifips_49 |   .0003764   .0027246     0.14   0.890    -.0049768    .0057296
   _Ifips_50 |  -.0031505   .0008039    -3.92   0.000      -.00473    -.001571
   _Ifips_51 |    -.00316   .0009348    -3.38   0.001    -.0049966   -.0013234
   _Ifips_53 |  -.0036127   .0009087    -3.98   0.000     -.005398   -.0018273
   _Ifips_54 |  -.0016792   .0014689    -1.14   0.254    -.0045652    .0012069
   _Ifips_55 |  -.0051829   .0006722    -7.71   0.000    -.0065036   -.0038621
   _Ifips_56 |   .0007427   .0013262     0.56   0.576     -.001863    .0033483
       _cons |   .1223864   .0118767    10.30   0.000     .0990518    .1457211
------------------------------------------------------------------------------

Another method to estimate robust standard error:

reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.fips, cluster(fips)

Outputs:

i.fips            _Ifips_1-56         (naturally coded; _Ifips_1 omitted)

Linear regression                               Number of obs     =        556
                                                F(6, 50)          =          .
                                                Prob > F          =          .
                                                R-squared         =     0.8867
                                                Root MSE          =     .00179

                                  (Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
             |               Robust
fatalityrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   sb_useage |  -.0057748    .001751    -3.30   0.002    -.0092919   -.0022577
     speed65 |   -.000425   .0004778    -0.89   0.378    -.0013847    .0005346
     speed70 |   .0012333   .0003654     3.38   0.001     .0004994    .0019671
        ba08 |  -.0013775   .0003935    -3.50   0.001    -.0021677   -.0005872
  drinkage21 |   .0007453   .0007536     0.99   0.327    -.0007684     .002259
   logincome |  -.0135144   .0025018    -5.40   0.000    -.0185394   -.0084894
         age |   .0009787   .0007826     1.25   0.217    -.0005933    .0025507
    _Ifips_2 |   .0100326   .0046542     2.16   0.036     .0006843    .0193809
    _Ifips_4 |   .0022479   .0006823     3.29   0.002     .0008774    .0036184
    _Ifips_5 |   .0012263   .0006766     1.81   0.076    -.0001327    .0025854
    _Ifips_6 |   .0015822   .0019286     0.82   0.416    -.0022914    .0054559
    _Ifips_8 |   -.000033   .0015549    -0.02   0.983    -.0031561    .0030901
    _Ifips_9 |  -.0041954   .0011113    -3.78   0.000    -.0064274   -.0019633
   _Ifips_10 |  -.0007464   .0008742    -0.85   0.397    -.0025023    .0010095
   _Ifips_11 |   .0005718   .0010655     0.54   0.594    -.0015683    .0027118
   _Ifips_12 |   .0009356   .0021564     0.43   0.666    -.0033956    .0052668
   _Ifips_13 |  -.0006633   .0016197    -0.41   0.684    -.0039166      .00259
   _Ifips_15 |  -.0006398   .0012935    -0.49   0.623    -.0032378    .0019582
   _Ifips_16 |   .0026381    .001448     1.82   0.074    -.0002703    .0055466
   _Ifips_17 |  -.0013855   .0009078    -1.53   0.133    -.0032089    .0004378
   _Ifips_18 |  -.0040948   .0004523    -9.05   0.000    -.0050033   -.0031863
   _Ifips_19 |  -.0026051   .0007147    -3.65   0.001    -.0040406   -.0011697
   _Ifips_20 |  -.0017657    .000348    -5.07   0.000    -.0024647   -.0010667
   _Ifips_21 |  -.0021878   .0001678   -13.04   0.000    -.0025249   -.0018508
   _Ifips_22 |   .0024998   .0013779     1.81   0.076    -.0002678    .0052673
   _Ifips_23 |  -.0059608   .0006398    -9.32   0.000    -.0072458   -.0046758
   _Ifips_24 |  -.0008352   .0011347    -0.74   0.465    -.0031142    .0014439
   _Ifips_25 |  -.0079672   .0009074    -8.78   0.000    -.0097898   -.0061445
   _Ifips_26 |  -.0018792   .0008724    -2.15   0.036    -.0036314    -.000127
   _Ifips_27 |  -.0057477   .0009287    -6.19   0.000    -.0076131   -.0038822
   _Ifips_28 |   .0038804   .0007184     5.40   0.000     .0024374    .0053233
   _Ifips_29 |  -.0013953   .0003414    -4.09   0.000    -.0020809   -.0007096
   _Ifips_30 |   .0012472   .0003392     3.68   0.001     .0005659    .0019284
   _Ifips_31 |  -.0041884   .0002797   -14.97   0.000    -.0047502   -.0036266
   _Ifips_32 |   .0066381   .0010135     6.55   0.000     .0046025    .0086737
   _Ifips_33 |  -.0041284    .001072    -3.85   0.000    -.0062816   -.0019752
   _Ifips_34 |  -.0046699   .0009271    -5.04   0.000    -.0065321   -.0028077
   _Ifips_35 |   .0046203   .0016093     2.87   0.006     .0013878    .0078527
   _Ifips_36 |  -.0006631   .0006996    -0.95   0.348    -.0020682    .0007421
   _Ifips_37 |   .0014575   .0003775     3.86   0.000     .0006994    .0022157
   _Ifips_38 |  -.0093883   .0004502   -20.86   0.000    -.0102925   -.0084841
   _Ifips_39 |    -.00464   .0003533   -13.14   0.000    -.0053495   -.0039305
   _Ifips_40 |  -.0054662   .0002129   -25.67   0.000    -.0058939   -.0050385
   _Ifips_41 |   .0000348   .0003693     0.09   0.925     -.000707    .0007767
   _Ifips_42 |   -.003881   .0012139    -3.20   0.002    -.0063191   -.0014429
   _Ifips_44 |   -.011189   .0010421   -10.74   0.000    -.0132822   -.0090959
   _Ifips_45 |   .0026997   .0005788     4.66   0.000     .0015372    .0038623
   _Ifips_46 |  -.0028029   .0003933    -7.13   0.000    -.0035929    -.002013
   _Ifips_47 |   .0011872   .0003186     3.73   0.000     .0005472    .0018272
   _Ifips_48 |   .0006296   .0021336     0.30   0.769    -.0036558    .0049149
   _Ifips_49 |   .0003764   .0041335     0.09   0.928    -.0079259    .0086787
   _Ifips_50 |  -.0031505   .0005095    -6.18   0.000    -.0041738   -.0021272
   _Ifips_51 |    -.00316   .0010105    -3.13   0.003    -.0051896   -.0011305
   _Ifips_53 |  -.0036127   .0010083    -3.58   0.001     -.005638   -.0015874
   _Ifips_54 |  -.0016792   .0015892    -1.06   0.296    -.0048711    .0015128
   _Ifips_55 |  -.0051829   .0004405   -11.77   0.000    -.0060676   -.0042981
   _Ifips_56 |   .0007427   .0014742     0.50   0.617    -.0022184    .0037037
       _cons |   .1223864   .0193546     6.32   0.000     .0835116    .1612613
------------------------------------------------------------------------------

If we do not need the estimated value of each \(\alpha_i\):

areg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age, cluster(fips) absorb(fips)

Outputs:

Linear regression, absorbing indicators         Number of obs     =        556
                                                F(   7,     50)   =      87.90
                                                Prob > F          =     0.0000
                                                R-squared         =     0.8867
                                                Adj R-squared     =     0.8737
                                                Root MSE          =     0.0018

                                  (Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
             |               Robust
fatalityrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   sb_useage |  -.0057748    .001751    -3.30   0.002    -.0092919   -.0022577
     speed65 |   -.000425   .0004778    -0.89   0.378    -.0013847    .0005346
     speed70 |   .0012333   .0003654     3.38   0.001     .0004994    .0019671
        ba08 |  -.0013775   .0003935    -3.50   0.001    -.0021677   -.0005872
  drinkage21 |   .0007453   .0007536     0.99   0.327    -.0007684     .002259
   logincome |  -.0135144   .0025018    -5.40   0.000    -.0185394   -.0084894
         age |   .0009787   .0007826     1.25   0.217    -.0005933    .0025507
       _cons |   .1209958   .0193262     6.26   0.000      .082178    .1598137
-------------+----------------------------------------------------------------
        fips |   absorbed                                      (51 categories)

The results change when state effects are included. The coefficient on seat belt usage is now negative and the coefficient is statistically significant. The estimated value of sb_useage is 0.0057.

States with more dangerous driving conditions (and a higher fatality rate) also have more people wearing seat belts. Thus (1) suffers from omitted variable bias.

(c)

\[y_{it}=\alpha_i + \alpha_t + \beta x_{it}+u_{it}\]

reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.fips i.year, cluster(fips)

Outputs:

i.fips            _Ifips_1-56         (naturally coded; _Ifips_1 omitted)
i.year            _Iyear_1983-1997    (naturally coded; _Iyear_1983 omitted)

Linear regression                               Number of obs     =        556
                                                F(20, 50)         =          .
                                                Prob > F          =          .
                                                R-squared         =     0.9098
                                                Root MSE          =     .00162

                                  (Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
             |               Robust
fatalityrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   sb_useage |  -.0037186   .0015246    -2.44   0.018    -.0067808   -.0006563
     speed65 |  -.0007833   .0006093    -1.29   0.205    -.0020071    .0004405
     speed70 |   .0008042   .0004803     1.67   0.100    -.0001605    .0017688
        ba08 |  -.0008225   .0004656    -1.77   0.083    -.0017577    .0001127
  drinkage21 |  -.0011337   .0006534    -1.74   0.089    -.0024461    .0001787
   logincome |   .0062643   .0070367     0.89   0.378    -.0078693    .0203979
         age |    .001318   .0007287     1.81   0.076    -.0001455    .0027816
    _Ifips_2 |    .006243   .0042864     1.46   0.152    -.0023666    .0148526
    _Ifips_4 |   .0010385   .0007334     1.42   0.163    -.0004346    .0025115
    _Ifips_5 |   .0019924   .0006749     2.95   0.005     .0006367     .003348
    _Ifips_6 |  -.0046545   .0026128    -1.78   0.081    -.0099023    .0005934
    _Ifips_8 |  -.0046086   .0020453    -2.25   0.029    -.0087167   -.0005005
    _Ifips_9 |  -.0158628   .0036944    -4.29   0.000    -.0232833   -.0084423
   _Ifips_10 |  -.0073367   .0022963    -3.19   0.002     -.011949   -.0027243
   _Ifips_11 |  -.0108581   .0039561    -2.74   0.008    -.0188042    -.002912
   _Ifips_12 |  -.0047175   .0027592    -1.71   0.094    -.0102595    .0008244
   _Ifips_13 |   -.002997   .0015928    -1.88   0.066    -.0061962    .0002022
   _Ifips_15 |   -.007201   .0018451    -3.90   0.000    -.0109069    -.003495
   _Ifips_16 |    .003059   .0013709     2.23   0.030     .0003055    .0058125
   _Ifips_17 |  -.0073873   .0020735    -3.56   0.001     -.011552   -.0032226
   _Ifips_18 |   -.006817   .0008814    -7.73   0.000    -.0085874   -.0050466
   _Ifips_19 |  -.0057302   .0010414    -5.50   0.000    -.0078219   -.0036385
   _Ifips_20 |  -.0054187   .0012191    -4.44   0.000    -.0078674     -.00297
   _Ifips_21 |  -.0014577   .0002027    -7.19   0.000    -.0018648   -.0010506
   _Ifips_22 |   .0031179   .0013502     2.31   0.025     .0004059    .0058298
   _Ifips_23 |  -.0081397     .00105    -7.75   0.000    -.0102486   -.0060307
   _Ifips_24 |  -.0083354   .0025522    -3.27   0.002    -.0134617    -.003209
   _Ifips_25 |  -.0163695   .0029061    -5.63   0.000    -.0222066   -.0105324
   _Ifips_26 |  -.0060909   .0015497    -3.93   0.000    -.0092036   -.0029783
   _Ifips_27 |  -.0107385   .0017307    -6.20   0.000    -.0142148   -.0072622
   _Ifips_28 |   .0076234   .0012895     5.91   0.000     .0050335    .0102134
   _Ifips_29 |   -.004406   .0010682    -4.12   0.000    -.0065515   -.0022604
   _Ifips_30 |   .0008326   .0003791     2.20   0.033     .0000712    .0015939
   _Ifips_31 |  -.0069169   .0009749    -7.09   0.000    -.0088751   -.0049586
   _Ifips_32 |   .0012562   .0019356     0.65   0.519    -.0026315     .005144
   _Ifips_33 |  -.0107429   .0023232    -4.62   0.000    -.0154091   -.0060768
   _Ifips_34 |  -.0146688   .0031854    -4.61   0.000    -.0210669   -.0082708
   _Ifips_35 |    .005655   .0015416     3.67   0.001     .0025586    .0087514
   _Ifips_36 |  -.0093885   .0026295    -3.57   0.001      -.01467    -.004107
   _Ifips_37 |  -.0012724   .0007679    -1.66   0.104    -.0028147      .00027
   _Ifips_38 |  -.0090427   .0003947   -22.91   0.000    -.0098356   -.0082499
   _Ifips_39 |   -.008499   .0011757    -7.23   0.000    -.0108605   -.0061375
   _Ifips_40 |  -.0057419   .0002094   -27.42   0.000    -.0061625   -.0053214
   _Ifips_41 |  -.0039604    .001228    -3.23   0.002     -.006427   -.0014939
   _Ifips_42 |  -.0095413   .0020478    -4.66   0.000    -.0136544   -.0054281
   _Ifips_44 |  -.0162439   .0019085    -8.51   0.000    -.0200773   -.0124105
   _Ifips_45 |   .0028703   .0005825     4.93   0.000     .0017002    .0040403
   _Ifips_46 |  -.0026968   .0003757    -7.18   0.000    -.0034514   -.0019422
   _Ifips_47 |  -.0009243   .0007277    -1.27   0.210    -.0023859    .0005373
   _Ifips_48 |  -.0013714   .0020247    -0.68   0.501    -.0054381    .0026953
   _Ifips_49 |   .0027227   .0038473     0.71   0.482    -.0050048    .0104502
   _Ifips_50 |  -.0062963    .001069    -5.89   0.000    -.0084435   -.0041491
   _Ifips_51 |  -.0088905    .001912    -4.65   0.000    -.0127308   -.0050502
   _Ifips_53 |  -.0086983   .0017761    -4.90   0.000    -.0122657   -.0051309
   _Ifips_54 |  -.0009197   .0014567    -0.63   0.531    -.0038455    .0020061
   _Ifips_55 |   -.008633     .00109    -7.92   0.000    -.0108223   -.0064437
   _Ifips_56 |  -.0010498   .0014509    -0.72   0.473    -.0039641    .0018645
 _Iyear_1984 |  -.0004319   .0014475    -0.30   0.767    -.0033392    .0024754
 _Iyear_1985 |  -.0010707    .001853    -0.58   0.566    -.0047925    .0026512
 _Iyear_1986 |  -.0005777    .002109    -0.27   0.785    -.0048138    .0036583
 _Iyear_1987 |  -.0008722   .0026195    -0.33   0.741    -.0061336    .0043892
 _Iyear_1988 |   -.001885   .0030219    -0.62   0.536    -.0079547    .0041847
 _Iyear_1989 |  -.0041766   .0034205    -1.22   0.228    -.0110468    .0026936
 _Iyear_1990 |   -.005266   .0037186    -1.42   0.163     -.012735    .0022031
 _Iyear_1991 |  -.0066622   .0039487    -1.69   0.098    -.0145935     .001269
 _Iyear_1992 |   -.008518   .0041863    -2.03   0.047    -.0169265   -.0001095
 _Iyear_1993 |  -.0089399   .0044105    -2.03   0.048    -.0177988   -.0000811
 _Iyear_1994 |  -.0096297   .0048249    -2.00   0.051    -.0193207    .0000613
 _Iyear_1995 |  -.0101123   .0051428    -1.97   0.055    -.0204419    .0002172
 _Iyear_1996 |  -.0110766   .0054713    -2.02   0.048     -.022066   -.0000871
 _Iyear_1997 |  -.0116075   .0058129    -2.00   0.051    -.0232831    .0000681
       _cons |  -.0730503   .0686829    -1.06   0.293    -.2110039    .0649033
------------------------------------------------------------------------------

Tidier version:

areg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.year, cluster(fips) absorb(fips)

Outputs:

i.year            _Iyear_1983-1997    (naturally coded; _Iyear_1983 omitted)

Linear regression, absorbing indicators         Number of obs     =        556
                                                F(  21,     50)   =      47.41
                                                Prob > F          =     0.0000
                                                R-squared         =     0.9098
                                                Adj R-squared     =     0.8966
                                                Root MSE          =     0.0016

                                  (Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
             |               Robust
fatalityrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   sb_useage |  -.0037186   .0015246    -2.44   0.018    -.0067808   -.0006563
     speed65 |  -.0007833   .0006093    -1.29   0.205    -.0020071    .0004405
     speed70 |   .0008042   .0004803     1.67   0.100    -.0001605    .0017688
        ba08 |  -.0008225   .0004656    -1.77   0.083    -.0017577    .0001127
  drinkage21 |  -.0011337   .0006534    -1.74   0.089    -.0024461    .0001787
   logincome |   .0062643   .0070367     0.89   0.378    -.0078693    .0203979
         age |    .001318   .0007287     1.81   0.076    -.0001455    .0027816
 _Iyear_1984 |  -.0004319   .0014475    -0.30   0.767    -.0033392    .0024754
 _Iyear_1985 |  -.0010707    .001853    -0.58   0.566    -.0047925    .0026512
 _Iyear_1986 |  -.0005777    .002109    -0.27   0.785    -.0048138    .0036583
 _Iyear_1987 |  -.0008722   .0026195    -0.33   0.741    -.0061336    .0043892
 _Iyear_1988 |   -.001885   .0030219    -0.62   0.536    -.0079547    .0041847
 _Iyear_1989 |  -.0041766   .0034205    -1.22   0.228    -.0110468    .0026936
 _Iyear_1990 |   -.005266   .0037186    -1.42   0.163     -.012735    .0022031
 _Iyear_1991 |  -.0066622   .0039487    -1.69   0.098    -.0145935     .001269
 _Iyear_1992 |   -.008518   .0041863    -2.03   0.047    -.0169265   -.0001095
 _Iyear_1993 |  -.0089399   .0044105    -2.03   0.048    -.0177988   -.0000811
 _Iyear_1994 |  -.0096297   .0048249    -2.00   0.051    -.0193207    .0000613
 _Iyear_1995 |  -.0101123   .0051428    -1.97   0.055    -.0204419    .0002172
 _Iyear_1996 |  -.0110766   .0054713    -2.02   0.048     -.022066   -.0000871
 _Iyear_1997 |  -.0116075   .0058129    -2.00   0.051    -.0232831    .0000681
       _cons |  -.0779904   .0697046    -1.12   0.269    -.2179962    .0620155
-------------+----------------------------------------------------------------
        fips |   absorbed                                      (51 categories)

(c)

Test effect:

reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 logincome age i.year i.fips, cluster(fips)
testparm i.year

Outputs:

 ( 1)  1984.year = 0
 ( 2)  1985.year = 0
 ( 3)  1986.year = 0
 ( 4)  1987.year = 0
 ( 5)  1988.year = 0
 ( 6)  1989.year = 0
 ( 7)  1990.year = 0
 ( 8)  1991.year = 0
 ( 9)  1992.year = 0
 (10)  1993.year = 0
 (11)  1994.year = 0
 (12)  1995.year = 0
 (13)  1996.year = 0
 (14)  1997.year = 0

       F( 14,    50) =    8.90
            Prob > F =    0.0000

(e)

i.year            _Iyear_1983-1997    (naturally coded; _Iyear_1983 omitted)

Linear regression, absorbing indicators         Number of obs     =        556
                                                F(  21,     50)   =      47.41
                                                Prob > F          =     0.0000
                                                R-squared         =     0.9098
                                                Adj R-squared     =     0.8966
                                                Root MSE          =     0.0016

                                  (Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
             |               Robust
fatalityrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   sb_useage |  -.0037186   .0015246    -2.44   0.018    -.0067808   -.0006563
     speed65 |  -.0007833   .0006093    -1.29   0.205    -.0020071    .0004405
     speed70 |   .0008042   .0004803     1.67   0.100    -.0001605    .0017688
        ba08 |  -.0008225   .0004656    -1.77   0.083    -.0017577    .0001127
  drinkage21 |  -.0011337   .0006534    -1.74   0.089    -.0024461    .0001787
   logincome |   .0062643   .0070367     0.89   0.378    -.0078693    .0203979
         age |    .001318   .0007287     1.81   0.076    -.0001455    .0027816
-------------+----------------------------------------------------------------
        fips |   absorbed                                      (51 categories)

\[fatality~rate=-0.00372\times sb~useage+...\]

A 38% increase in seat belt usage from 0.52 to 0.90 is estimated to lower the fatality rate by \(0.00372\times 0.38=0.0014\) fatalities per million traffic miles. The average number of traffic miles per year per state in the sample is 41,447. For a state with the average number of traffic miles, the number of fatalities prevented is \(0.0014\times 41,447=58\) fatalities.

(f)

areg sb_useage primary secondary speed65 speed70 ba08 drinkage logincome age i.year, cluster(fips) absorb(fips)

Outputs:


Linear regression, absorbing indicators         Number of obs     =        556
                                                F(  22,     50)   =     456.16
                                                Prob > F          =     0.0000
                                                R-squared         =     0.9016
                                                Adj R-squared     =     0.8869
                                                Root MSE          =     0.0572

                                  (Std. Err. adjusted for 51 clusters in fips)
------------------------------------------------------------------------------
             |               Robust
   sb_useage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     primary |   .2055968   .0243489     8.44   0.000     .1566907     .254503
   secondary |   .1085184   .0140858     7.70   0.000     .0802262    .1368106
     speed65 |   .0228485   .0215529     1.06   0.294    -.0204417    .0661388
     speed70 |   .0120424   .0216313     0.56   0.580    -.0314054    .0554902
        ba08 |   .0037584    .018507     0.20   0.840     -.033414    .0409307
  drinkage21 |   .0107149   .0285425     0.38   0.709    -.0466144    .0680442
   logincome |   .0582708    .269387     0.22   0.830     -.482809    .5993506
         age |   .0138232   .0243016     0.57   0.572     -.034988    .0626345
             |
        year |
       1984  |   .0041178   .0299885     0.14   0.891    -.0561159    .0643514
       1985  |   .0575169   .0452117     1.27   0.209    -.0332935    .1483273
       1986  |   .1073527   .0579004     1.85   0.070    -.0089437     .223649
       1987  |   .1240647   .0810099     1.53   0.132    -.0386485    .2867779
       1988  |   .1390924   .1025384     1.36   0.181    -.0668621    .3450468
       1989  |   .1702325   .1186812     1.43   0.158    -.0681457    .4086106
       1990  |   .1897753   .1358066     1.40   0.168    -.0830004     .462551
       1991  |   .2370697    .143986     1.65   0.106    -.0521347    .5262741
       1992  |   .2633971   .1598977     1.65   0.106     -.057767    .5845612
       1993  |   .2824192   .1717693     1.64   0.106    -.0625896    .6274279
       1994  |   .2983722   .1826111     1.63   0.109    -.0684131    .6651575
       1995  |   .2959081   .1946357     1.52   0.135    -.0950292    .6868454
       1996  |   .2875641   .2086531     1.38   0.174    -.1315281    .7066562
       1997  |   .2977352   .2209318     1.35   0.184    -.1460193    .7414896
             |
       _cons |   -.893022   2.775641    -0.32   0.749     -6.46806    4.682016
-------------+----------------------------------------------------------------
        fips |   absorbed                                      (51 categories)

The coefficients on primary and secondary are positive and significant. Primary enforcement is estimated to increase seat belt usage by 20.6% and secondary enforcement is estimated to increase seat belt usage by 10.9%.

(g)

\[sb~usage = 0.206\times primary+0.109\times secondary+...\]

New Jersey changed from secondary enforcement to primary enforcement, which means:

\[primary:0\rightarrow 1,secondary: 1\rightarrow 0\]

\[\Delta sb~usage = 0.206-0.109=0.094\]

This is predicted to reduce the fatality rate by \(0.00372\times 0.094= 0.00035\) fatalities per million traffic miles.

\[\Delta fatality~rate=-0.00372\times \Delta sb~useage=0.00372\times 0.094= 0.00035\]

The data set shows that there were 63,000 million traffic miles in 1997 in New Jersey. Assuming the same number of traffic miles in 2000 yields \(0.00035\times 63,000=22\) lives saved