normality$p.value <- round(normality$p.value,4)
normality$statistic <- round(normality$p.value,4)
normality$color <- ifelse(normality$p.value<0.05, 1, 0)
datatable(normality, rownames = FALSE, options = list(columnDefs = list(list(targets = c(0,6), visible = FALSE)))) %>%
formatStyle( 'color',target = 'row',backgroundColor = styleEqual(c(0, 1), c('white', 'yellow')))
Two means test methods, one for normally distributed barrios and another for non normally where *_A == BUFFER and *_B == BARRIO.
normal$p.value <- round(normal$p.value,4)
normal$MEAN_A <- round(normal$MEAN_A,4)
normal$MEAN_B <- round(normal$MEAN_B,4)
normal$SD_A <- round(normal$SD_A,4)
normal$SD_B <- round(normal$SD_B,4)
normal$color <- ifelse(normal$p.value<0.05, 1, 0)
datatable(normal, rownames = FALSE, options = list(columnDefs = list(list(targets = 10, visible = FALSE)))) %>%
formatStyle('color',target = 'row',backgroundColor = styleEqual(c(0, 1), c('white', 'yellow')))
nonormal$p.value <- round(nonormal$p.value,4)
nonormal$MEAN_A <- round(nonormal$MEAN_A,4)
nonormal$MEAN_B <- round(nonormal$MEAN_B,4)
nonormal$SD_A <- round(nonormal$SD_A,4)
nonormal$SD_B <- round(nonormal$SD_B,4)
nonormal$color <- ifelse(nonormal$p.value<0.05, 1, 0)
datatable(nonormal, rownames = FALSE, options = list(columnDefs = list(list(targets = 10, visible = FALSE)))) %>%
formatStyle('color',target = 'row',backgroundColor = styleEqual(c(0, 1), c('white', 'yellow')))
areasverdes$p.value <- round(areasverdes$p.value,4)
areasverdes$MEAN_A <- round(areasverdes$MEAN_A,4)
areasverdes$MEAN_B <- round(areasverdes$MEAN_B,4)
areasverdes$SD_A <- round(areasverdes$SD_A,4)
areasverdes$SD_B <- round(areasverdes$SD_B,4)
areasverdes$color <- ifelse(areasverdes$p.value<0.05, 1, 0)
datatable(areasverdes, rownames = FALSE, options = list(columnDefs = list(list(targets = 10, visible = FALSE)))) %>%
formatStyle('color',target = 'row',backgroundColor = styleEqual(c(0, 1), c('white', 'yellow')))