Objective

This project is aimed to use R for Multilevel analysis. Multilevel analysis is a method used to analyze data with “complex patterns of variability with a focus on nested sources of such vairiability” (Sninjders and Bosker, p.14, 2012). It uses random-effect models, hierarchical models, variance-components models, random-coefficient models, random-coefficient models, and linear or generalized linear models. It helps model data that has a complex structure and a large range nested sources. Modifiable areal unit problem (MAUP) is another method used in Spatial Analysis that helps understand how to do aggregation of data, allowing the data to portray distinctive levels of aggregation within the outline of a zoning system (Environmental and Planning, 1991). The data that was used was based off the Census data (https://census.ukdataservice.ac.uk/get-data/aggregate-data) where there is wide range of socioeconomic and demographic data. The variables used from the Census included are downloaded on an Output Area (OA) scale of Liverpool and included, age between 20-24 years old, male, female, car availability, low amount of hours (1-19 hours) of provisional unpaid care, high amount of hours (50+ hours) of provisional unpaid care, and population count. The Consumer Data Research Centre (CDRC; https://www.cdrc.ac.uk/) was also used to obtain the Income Multiple Deprivation of Liverpool in a Lower Super Output Area (LSOA) which consists of employment, education, health, crime, housing, living environment, rank, and score.

Methods

Installing and Loading in the packages needed for R

library(rgdal)
## Warning: package 'rgdal' was built under R version 3.3.2
## Loading required package: sp
## Warning: package 'sp' was built under R version 3.3.2
## rgdal: version: 1.2-5, (SVN revision 648)
##  Geospatial Data Abstraction Library extensions to R successfully loaded
##  Loaded GDAL runtime: GDAL 2.1.2, released 2016/10/24
##  Path to GDAL shared files: /Library/Frameworks/R.framework/Versions/3.3/Resources/library/rgdal/gdal
##  Loaded PROJ.4 runtime: Rel. 4.9.1, 04 March 2015, [PJ_VERSION: 491]
##  Path to PROJ.4 shared files: /Library/Frameworks/R.framework/Versions/3.3/Resources/library/rgdal/proj
##  Linking to sp version: 1.2-4
library(maptools)
## Warning: package 'maptools' was built under R version 3.3.2
## Checking rgeos availability: TRUE
library(classInt)
library(RColorBrewer)
library(lme4)
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.3.2
library(merTools)
## Warning: package 'merTools' was built under R version 3.3.2
## Loading required package: arm
## Warning: package 'arm' was built under R version 3.3.2
## Loading required package: MASS
## 
## arm (Version 1.9-3, built: 2016-11-21)
## Working directory is /Users/Ernie/Desktop/Spatial Analysis/Assignment 1
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
## 
##     select
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)

Importing OA data that comes from the Census coontaining the variables that will be used.

OA <- readOGR(dsn = "/Users/Ernie/Desktop/Spatial Analysis/Assignment 1/OA.shp", stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile 
## Source: "/Users/Ernie/Desktop/Spatial Analysis/Assignment 1/OA.shp", layer: "OA"
## with 1584 features
## It has 23 fields
## Integer64 fields read as strings:  IMD_rank IMD_Number c_Age20-24 c_Pop c_Male c_Female c_CarAvail c_LilCare c_LotCare

Need the data slot of the spatial data OA to run models to extract the attribute data from the OA and name it OAdata as well as in the LSOA data set into LSOAdata. Some data minipulation has to be taking into consideration since the data that was obtained has to be converted into as.numeric().

OAData <- OA@data

OAData$c_Age20.24 <- as.numeric(OAData$c_Age20.24)
OAData$c_Pop <- as.numeric(OAData$c_Pop)
OAData$c_Male <- as.numeric(OAData$c_Male)
OAData$c_Female <- as.numeric(OAData$c_Female)
OAData$c_CarAvail <- as.numeric(OAData$c_CarAvail)
OAData$c_LilCare <- as.numeric(OAData$c_LilCare)
OAData$c_LotCare <- as.numeric(OAData$c_LotCare)

head(OAData)
##       OA_CD   LSOA_CD   MSOA_CD    LAD_CD IMD_rank IMD_score IMD_income
## 0 E00176737 E01033761 E02006932 E08000012     9835     26.79       0.04
## 1 E00033515 E01006614 E02001358 E08000012     1216     57.09       0.33
## 2 E00033141 E01006546 E02001365 E08000012      747     62.12       0.37
## 3 E00176757 E01006646 E02001369 E08000012      636     63.66       0.41
## 4 E00034050 E01006712 E02001375 E08000012     5366     37.24       0.23
## 5 E00034280 E01006761 E02001366 E08000012      757     62.01       0.34
##   IMD_employ IMD_educat IMD_health IMD_crime IMD_housin IMD_living
## 0       0.03       6.32       1.13      2.53      18.14      70.28
## 1       0.28      35.82       1.60      1.57       9.91      67.68
## 2       0.28      47.41       1.62      1.71       8.82      66.90
## 3       0.31      47.66       2.43      1.25      19.43      32.35
## 4       0.18      23.46       1.28      0.45       5.42      64.31
## 5       0.32      41.56       1.98      1.68      12.19      53.75
##   IMD_idaci IMD_idaopi IMD_Number c_Age20.24 c_Pop c_Male c_Female
## 0      0.39       0.22          1         73   185    122       63
## 1      0.43       0.30          1         23   281    128      153
## 2      0.53       0.27          1         19   208     95      113
## 3      0.60       0.56          1         45   200    120       80
## 4      0.32       0.30          1         16   321    158      163
## 5      0.37       0.34          1         15   140    123       64
##   c_CarAvail c_LilCare c_LotCare
## 0         29         7         0
## 1         65        19         9
## 2         61        14         5
## 3         91         3         2
## 4        112        16         4
## 5         20         2         2
  • Age 20-24 The age group of 20 to 24 years old
  • Pop The total population in each spatial unit
  • Male The total male population of each spatial unit
  • Female The total female population of each spatial unit
  • CarAvail The amount of person that own a vehicle per spatial unit
  • LilCare Low amount of hours between 1-19 that provide unpaid provsional care within each spatial unit
  • LotCare High amount of hours from 50+ that provide unpaid provsional care within each spatial unit

Load in LSOA Data that contains the Lower Super Output Area of Liverpool. As well as convertion of the census just as how it was done with the Output Area.

LSOA <- readOGR(dsn = "/Users/Ernie/Desktop/Spatial Analysis/Assignment 1/LSOA.shp", stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile 
## Source: "/Users/Ernie/Desktop/Spatial Analysis/Assignment 1/LSOA.shp", layer: "LSOA"
## with 298 features
## It has 22 fields
## Integer64 fields read as strings:  IMD_rank IMD_Number c_Age20-24 c_Pop c_Male c_Female c_CarAvail c_LilCare c_LotCare
LSOAData <- LSOA@data

LSOAData$c_Age20.24 <- as.numeric(LSOAData$c_Age20.24)
LSOAData$c_Pop <- as.numeric(LSOAData$c_Pop)
LSOAData$c_Male <- as.numeric(LSOAData$c_Male)
LSOAData$c_Female <- as.numeric(LSOAData$c_Female)
LSOAData$c_CarAvail <- as.numeric(LSOAData$c_CarAvail)
LSOAData$c_LilCare <- as.numeric(LSOAData$c_LilCare)
LSOAData$c_LotCare <- as.numeric(LSOAData$c_LotCare)

head(LSOAData)
##     LSOA_CD   MSOA_CD    LAD_CD IMD_rank IMD_score IMD_income IMD_employ
## 0 E01006540 E02001370 E08000012       48     78.55       0.48       0.41
## 1 E01006623 E02001359 E08000012    20374     13.29       0.08       0.11
## 2 E01006569 E02001375 E08000012     1522     54.64       0.31       0.28
## 3 E01006512 E02001377 E08000012    10518     25.61       0.10       0.08
## 4 E01006513 E02006932 E08000012    10339     25.91       0.04       0.03
## 5 E01006514 E02001383 E08000012     5247     37.64       0.19       0.15
##   IMD_educat IMD_health IMD_crime IMD_housin IMD_living IMD_idaci
## 0      62.28       3.02      1.48      18.10      51.82      0.49
## 1      12.59       0.40     -0.92      13.16      15.63      0.08
## 2      44.35       1.69      1.40      14.78      46.42      0.34
## 3      10.06       1.19     -0.20      24.49      68.91      0.16
## 4      20.13       0.58      1.50      25.15      85.48      0.21
## 5      15.50       1.86      0.74      21.85      58.90      0.23
##   IMD_idaopi IMD_Number c_Age20.24 c_Pop c_Male c_Female c_CarAvail
## 0       0.50          1        141  1485    776      733        266
## 1       0.12          1         86  1462    724      738        828
## 2       0.40          1         80  1372    672      757        415
## 3       0.31          1        615  1420   1070      810        314
## 4       0.20          1       1366  1691   1461     1480        353
## 5       0.48          1        586  1758   1177      931        466
##   c_LilCare c_LotCare
## 0        50        45
## 1       137        40
## 2        68        82
## 3        66        10
## 4        74         7
## 5       134        21

MAUP for bivariate correlation analysis

In this section, we look at whether multiple regression analysis is affected by the MAUP issue. The aim is to see how minimal amount of unpaid care and high amount of unpaid care is distributed in Liverpool. The multiple regression model relates the Unpaid Provisional Care (Care_Prop) to four independent variables: the percentage of the population who are male (c_Male), the percentage of the population who are in the age group of 20-24 years old (c_Age20.24); the percentage of the population who have access to a car (c_CarAvail) and the income deprivation of education (IMD_educat)

The OA Scale

OAData$Care_Prop <- (OAData$c_LilCare + OAData$c_LotCare) / OAData$c_Pop

cor(OAData[,c("Care_Prop", "c_Male", "c_Age20.24", "c_CarAvail", "IMD_educat")])
##             Care_Prop      c_Male  c_Age20.24  c_CarAvail  IMD_educat
## Care_Prop   1.0000000  0.12615522 -0.13078964  0.30331512 -0.15897706
## c_Male      0.1261552  1.00000000  0.59861930  0.28877296 -0.05905405
## c_Age20.24 -0.1307896  0.59861930  1.00000000 -0.09629814 -0.06860841
## c_CarAvail  0.3033151  0.28877296 -0.09629814  1.00000000 -0.61737138
## IMD_educat -0.1589771 -0.05905405 -0.06860841 -0.61737138  1.00000000

The LSOA Scale

LSOAData$Care_Prop <- (LSOAData$c_LilCare + LSOAData$c_LotCare) / LSOAData$c_Pop

cor(LSOAData[,c("Care_Prop", "c_Male", "c_Age20.24", "c_CarAvail", "IMD_educat")])
##             Care_Prop      c_Male  c_Age20.24 c_CarAvail  IMD_educat
## Care_Prop   1.0000000 -0.23223434 -0.49550605  0.4838717 -0.24535384
## c_Male     -0.2322343  1.00000000  0.56920015  0.0855579 -0.01136351
## c_Age20.24 -0.4955061  0.56920015  1.00000000 -0.2107498 -0.07368436
## c_CarAvail  0.4838717  0.08555790 -0.21074981  1.0000000 -0.75222157
## IMD_educat -0.2453538 -0.01136351 -0.07368436 -0.7522216  1.00000000

We are able to see how the MAUP between two different levels, the Output Area and the Lower Super Output Area of Liverpool, have different correlations because of the spatial units that are within each polygon.

A Null multilevel model

First, the data was sorted by LSOA so that we can see the hirarchical datastructure clearly

OAData <- OAData[order(OAData$LSOA_CD),]
head(OAData)
##         OA_CD   LSOA_CD   MSOA_CD    LAD_CD IMD_rank IMD_score IMD_income
## 50  E00176655 E01006512 E02001377 E08000012    10518     25.61        0.1
## 182 E00176676 E01006512 E02001377 E08000012    10518     25.61        0.1
## 203 E00033015 E01006512 E02001377 E08000012    10518     25.61        0.1
## 521 E00033013 E01006512 E02001377 E08000012    10518     25.61        0.1
## 524 E00176644 E01006512 E02001377 E08000012    10518     25.61        0.1
## 711 E00033016 E01006512 E02001377 E08000012    10518     25.61        0.1
##     IMD_employ IMD_educat IMD_health IMD_crime IMD_housin IMD_living
## 50        0.08      10.06       1.19      -0.2      24.49      68.91
## 182       0.08      10.06       1.19      -0.2      24.49      68.91
## 203       0.08      10.06       1.19      -0.2      24.49      68.91
## 521       0.08      10.06       1.19      -0.2      24.49      68.91
## 524       0.08      10.06       1.19      -0.2      24.49      68.91
## 711       0.08      10.06       1.19      -0.2      24.49      68.91
##     IMD_idaci IMD_idaopi IMD_Number c_Age20.24 c_Pop c_Male c_Female
## 50       0.16       0.31          1        245   193    270      219
## 182      0.16       0.31          1         52   174    119       70
## 203      0.16       0.31          1         42   209    136       73
## 521      0.16       0.31          1         28   202     95      107
## 524      0.16       0.31          1         57   194    123       71
## 711      0.16       0.31          1        191   448    327      270
##     c_CarAvail c_LilCare c_LotCare   Care_Prop
## 50          18        15         2 0.088082902
## 182         35         6         0 0.034482759
## 203         55        12         1 0.062200957
## 521         57         7         3 0.049504950
## 524         42         0         1 0.005154639
## 711        107        26         3 0.064732143

A temperary (temp) value was created to show us the number of OA’s nested into the LSOA code.

temp <- data.frame(table(OAData$LSOA_CD))
names(temp) <- c("LSOA Code", "The number of OA nested into")
head(temp)
##   LSOA Code The number of OA nested into
## 1 E01006512                            6
## 2 E01006513                            9
## 3 E01006514                            7
## 4 E01006515                            6
## 5 E01006518                            6
## 6 E01006519                            5

Create a variable between the amount of little hours to high amount of hours that are put into unpaid provisional care.

OAData$Care_Prop <- (OAData$c_LilCare + OAData$c_LotCare) / OAData$c_Pop

model.0 <- lmer(Care_Prop ~ 1 + (1|LSOA_CD), data = OAData)
summary(model.0)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Care_Prop ~ 1 + (1 | LSOA_CD)
##    Data: OAData
## 
## REML criterion at convergence: -6543.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9057 -0.5606 -0.0515  0.5212  8.3678 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  LSOA_CD  (Intercept) 0.0003726 0.01930 
##  Residual             0.0007317 0.02705 
## Number of obs: 1584, groups:  LSOA_CD, 298
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 0.092929   0.001313   70.77

Variance Partition Coefficient (VPC LSOA)

The Variance Partition Coefficient (VPC) can be calculated to the variance between the LSOA-Level (0.0003726) and OA-Level (0.0007317)

VPC <- 0.0003726 / (0.0003726 + 0.0007317)
VPC
## [1] 0.3374083

VPC equals 0.3374083 (33%) Showing a variation in unpaid provisional care between LSOAs, which potrays how nessecary it is to model Care (unpaid) at scales of OA and LSOA

Exracting the fixed effect estimates or the regression coefficients fixef(model.0)

Extracting the variance of the MSOA-Level random effect

VarCorr(model.0)
##  Groups   Name        Std.Dev.
##  LSOA_CD  (Intercept) 0.019302
##  Residual             0.027051

Confidence Intervals

confint(model.0, level = 0.95)
## Computing profile confidence intervals ...
##                  2.5 %     97.5 %
## .sig01      0.01720887 0.02151874
## .sigma      0.02603841 0.02812972
## (Intercept) 0.09035304 0.09550822

Extract the LSOA-Level random effect

ranef(model.0)
## $LSOA_CD
##             (Intercept)
## E01006512 -3.182056e-02
## E01006513 -3.424307e-02
## E01006514 -6.271769e-03
## E01006515 -2.389268e-02
## E01006518  4.357436e-03
## E01006519  1.255529e-02
## E01006520 -2.589256e-02
## E01006521 -1.782948e-03
## E01006522 -2.302917e-02
## E01006523 -9.711750e-03
## E01006524  1.670782e-02
## E01006525  1.326104e-02
## E01006526  1.221497e-02
## E01006527  1.241699e-02
## E01006528  2.342506e-03
## E01006529  1.035681e-02
## E01006530  3.352210e-02
## E01006531  3.370281e-02
## E01006532  1.936776e-02
## E01006533  3.348017e-02
## E01006534  2.174749e-04
## E01006535  2.297925e-02
## E01006536  2.285272e-02
## E01006537 -8.702351e-03
## E01006538  3.303271e-02
## E01006539  2.638548e-02
## E01006540 -2.189120e-02
## E01006541 -1.185700e-03
## E01006542 -2.652369e-03
## E01006543  5.572251e-03
## E01006544  4.113301e-03
## E01006545  6.589273e-03
## E01006546 -1.232262e-02
## E01006547 -2.229952e-03
## E01006548 -7.984114e-03
## E01006549 -1.599363e-02
## E01006550 -3.678480e-02
## E01006551  1.452530e-02
## E01006552 -2.658222e-02
## E01006553 -3.396303e-02
## E01006554 -1.138770e-02
## E01006556 -1.733070e-02
## E01006557 -3.855496e-02
## E01006558 -2.028484e-02
## E01006560 -7.160643e-03
## E01006562 -2.022378e-02
## E01006563 -1.612804e-03
## E01006564  6.433300e-03
## E01006565  1.443978e-02
## E01006566  1.145556e-02
## E01006567  1.210408e-03
## E01006568  5.469830e-03
## E01006569  1.076650e-02
## E01006570  1.943674e-02
## E01006571  2.287266e-02
## E01006572 -7.578150e-03
## E01006573 -5.914207e-03
## E01006574  1.598141e-03
## E01006575  7.775546e-03
## E01006576  2.387109e-02
## E01006577  1.691041e-02
## E01006578  1.514708e-05
## E01006579  5.723570e-03
## E01006580  9.335757e-03
## E01006581  1.162124e-02
## E01006582  2.294152e-02
## E01006583  2.730759e-02
## E01006584  1.773775e-02
## E01006585  7.954465e-03
## E01006586  2.448851e-03
## E01006587  1.003304e-02
## E01006588  2.706666e-04
## E01006589  1.279328e-02
## E01006590 -1.125102e-02
## E01006591 -8.093073e-03
## E01006592  2.225210e-02
## E01006593 -1.544089e-02
## E01006594  1.890099e-02
## E01006595  1.474868e-02
## E01006596  1.081927e-02
## E01006597  1.678431e-02
## E01006598  1.433672e-02
## E01006599 -1.376750e-02
## E01006600  1.425505e-02
## E01006603  2.621962e-02
## E01006604  2.208490e-02
## E01006605  8.405288e-03
## E01006606  1.945978e-02
## E01006607  7.686896e-03
## E01006608  1.206272e-02
## E01006609  8.203711e-03
## E01006610 -8.160835e-03
## E01006611 -1.919262e-02
## E01006612 -3.947673e-03
## E01006613  7.070806e-03
## E01006614 -5.046058e-03
## E01006615 -7.479317e-03
## E01006616  1.152941e-02
## E01006617  1.603185e-03
## E01006618  1.574361e-02
## E01006619  7.781391e-03
## E01006620  2.284200e-02
## E01006621  4.145800e-02
## E01006622  9.421717e-03
## E01006623  1.927478e-02
## E01006624  7.192950e-03
## E01006625  2.613628e-02
## E01006626  2.731821e-02
## E01006627  1.650893e-02
## E01006628 -4.897909e-04
## E01006629  1.022897e-02
## E01006630 -3.036968e-03
## E01006632 -1.091781e-02
## E01006633 -9.671836e-03
## E01006637 -1.330671e-02
## E01006638 -2.762730e-03
## E01006639  2.726903e-04
## E01006640  1.906137e-02
## E01006641 -2.007917e-02
## E01006642 -7.694855e-03
## E01006643  5.820140e-03
## E01006644  1.845258e-03
## E01006645 -2.164218e-03
## E01006646 -1.013735e-02
## E01006647  1.869488e-03
## E01006648 -4.981537e-03
## E01006651  1.140958e-02
## E01006652  1.235935e-02
## E01006653  1.921725e-02
## E01006654 -4.376887e-03
## E01006655 -5.324569e-04
## E01006656  4.114258e-03
## E01006657 -7.872799e-03
## E01006658  4.181273e-04
## E01006659  2.014006e-02
## E01006660  3.377731e-03
## E01006661  4.249064e-03
## E01006662 -4.559984e-03
## E01006663 -4.986052e-04
## E01006664 -8.414957e-03
## E01006665  1.291251e-02
## E01006666  3.628415e-03
## E01006667  1.091174e-02
## E01006668  2.110586e-03
## E01006669 -3.686651e-03
## E01006670  1.167296e-02
## E01006671  9.358581e-03
## E01006672  5.062009e-03
## E01006673 -2.407697e-02
## E01006674 -1.829823e-02
## E01006675 -2.518753e-02
## E01006676 -1.697750e-02
## E01006677 -1.756856e-02
## E01006678  1.211965e-02
## E01006679 -1.614432e-02
## E01006680  2.170238e-02
## E01006681  9.028126e-03
## E01006682  2.732908e-02
## E01006683  2.411389e-02
## E01006684  1.630417e-02
## E01006685  7.291282e-03
## E01006686  2.288973e-02
## E01006687  8.607007e-03
## E01006688 -4.810441e-03
## E01006689  6.103415e-03
## E01006690 -2.293878e-02
## E01006691 -1.887900e-02
## E01006692 -7.986259e-03
## E01006693  8.118563e-04
## E01006694 -2.279981e-02
## E01006695 -2.794374e-02
## E01006696 -1.542892e-02
## E01006697 -1.037761e-02
## E01006698  2.472150e-03
## E01006699 -3.348621e-03
## E01006700 -9.121578e-03
## E01006701  9.023180e-05
## E01006702 -5.752432e-03
## E01006703 -1.002697e-02
## E01006705  3.264763e-05
## E01006706  9.094105e-03
## E01006707  5.904415e-03
## E01006708 -3.727901e-03
## E01006709 -5.584794e-03
## E01006710  9.084507e-03
## E01006711  1.068391e-02
## E01006712 -6.659937e-03
## E01006713 -3.494552e-03
## E01006716 -3.972287e-03
## E01006717  1.611413e-02
## E01006718  7.096009e-03
## E01006719  9.482573e-03
## E01006720 -3.239984e-02
## E01006721 -1.646945e-02
## E01006722 -3.550460e-02
## E01006723 -2.322143e-02
## E01006724 -2.578817e-02
## E01006725 -1.290198e-02
## E01006726 -1.882985e-02
## E01006727 -9.800065e-03
## E01006728 -2.019934e-02
## E01006729 -8.322356e-03
## E01006730  7.501505e-03
## E01006731 -1.913531e-04
## E01006732  9.207381e-03
## E01006734 -4.517331e-03
## E01006735 -2.352048e-03
## E01006736  8.096132e-03
## E01006737  2.479464e-02
## E01006738  1.730998e-03
## E01006739 -9.628008e-03
## E01006740 -1.484395e-02
## E01006741  7.097818e-03
## E01006742  1.106181e-02
## E01006743 -6.391225e-03
## E01006744 -6.472019e-03
## E01006745 -6.211850e-03
## E01006746 -1.768134e-03
## E01006747  3.071708e-02
## E01006748 -3.060059e-02
## E01006751 -1.602370e-02
## E01006752 -4.895420e-03
## E01006753  4.636644e-03
## E01006754 -1.171528e-02
## E01006755 -7.826194e-03
## E01006756 -5.273068e-03
## E01006757 -1.858317e-02
## E01006758 -1.506321e-03
## E01006759  6.624059e-03
## E01006760 -1.579089e-02
## E01006761  1.686619e-03
## E01006762  3.442153e-03
## E01006763  6.350352e-03
## E01006764 -7.525493e-03
## E01006765  1.343083e-02
## E01006766 -1.184864e-02
## E01006767 -8.660403e-03
## E01006768  6.421767e-03
## E01006769 -1.394706e-03
## E01006770  9.889624e-03
## E01006771  5.493938e-04
## E01006772  1.181820e-02
## E01006773  1.920767e-02
## E01006774  1.400108e-02
## E01006775  5.768256e-03
## E01006776 -1.534655e-02
## E01006778 -1.793883e-03
## E01006779  1.165406e-02
## E01006780  6.661440e-03
## E01006781  1.349923e-02
## E01006782  9.569002e-03
## E01006783 -2.737926e-05
## E01006784 -5.673674e-03
## E01006785  1.736877e-03
## E01006786  1.143319e-02
## E01006787  2.719366e-02
## E01006788  8.298214e-03
## E01006790 -7.313847e-03
## E01006791  3.309313e-03
## E01006792  9.025187e-03
## E01006793  5.334619e-04
## E01006794  8.117879e-03
## E01006795  1.727118e-02
## E01006796  2.474855e-02
## E01006797  1.439675e-02
## E01006798  2.889985e-02
## E01006799  1.219872e-02
## E01006800  3.785718e-02
## E01006801  1.825128e-02
## E01032505  1.620683e-02
## E01032506 -1.339253e-02
## E01032507 -6.713807e-03
## E01032508 -9.880200e-03
## E01032509 -6.913134e-03
## E01032510 -2.220786e-03
## E01032511  1.664835e-02
## E01033747 -7.703295e-03
## E01033748 -2.991864e-02
## E01033749 -3.613846e-02
## E01033750 -3.348848e-02
## E01033751 -6.830149e-03
## E01033752 -4.916580e-02
## E01033753 -4.399901e-02
## E01033754 -2.636405e-02
## E01033755 -4.229885e-02
## E01033756 -3.572738e-02
## E01033757 -3.081787e-02
## E01033758 -1.541517e-03
## E01033759 -9.322819e-03
## E01033760 -2.644491e-02
## E01033761 -4.721788e-02
## E01033762 -1.453108e-02
## E01033763 -1.284377e-02
## E01033764 -1.591561e-04
## E01033765 -1.930591e-03
## E01033766 -1.677725e-02
## E01033767 -1.025712e-02
## E01033768 -2.315115e-02

Estimate standard errors of each random effect

REextract(model.0)
##     groupFctr   groupID   (Intercept) (Intercept)_se
## 1     LSOA_CD E01006512 -3.182056e-02    0.009585429
## 2     LSOA_CD E01006513 -3.424307e-02    0.008169440
## 3     LSOA_CD E01006514 -6.271769e-03    0.009034957
## 4     LSOA_CD E01006515 -2.389268e-02    0.009585429
## 5     LSOA_CD E01006518  4.357436e-03    0.009585429
## 6     LSOA_CD E01006519  1.255529e-02    0.010250570
## 7     LSOA_CD E01006520 -2.589256e-02    0.009585429
## 8     LSOA_CD E01006521 -1.782948e-03    0.009585429
## 9     LSOA_CD E01006522 -2.302917e-02    0.009585429
## 10    LSOA_CD E01006523 -9.711750e-03    0.009585429
## 11    LSOA_CD E01006524  1.670782e-02    0.011076662
## 12    LSOA_CD E01006525  1.326104e-02    0.010250570
## 13    LSOA_CD E01006526  1.221497e-02    0.010250570
## 14    LSOA_CD E01006527  1.241699e-02    0.009585429
## 15    LSOA_CD E01006528  2.342506e-03    0.010250570
## 16    LSOA_CD E01006529  1.035681e-02    0.010250570
## 17    LSOA_CD E01006530  3.352210e-02    0.010250570
## 18    LSOA_CD E01006531  3.370281e-02    0.009585429
## 19    LSOA_CD E01006532  1.936776e-02    0.010250570
## 20    LSOA_CD E01006533  3.348017e-02    0.010250570
## 21    LSOA_CD E01006534  2.174749e-04    0.010250570
## 22    LSOA_CD E01006535  2.297925e-02    0.010250570
## 23    LSOA_CD E01006536  2.285272e-02    0.009585429
## 24    LSOA_CD E01006537 -8.702351e-03    0.008569590
## 25    LSOA_CD E01006538  3.303271e-02    0.011076662
## 26    LSOA_CD E01006539  2.638548e-02    0.010250570
## 27    LSOA_CD E01006540 -2.189120e-02    0.009585429
## 28    LSOA_CD E01006541 -1.185700e-03    0.009585429
## 29    LSOA_CD E01006542 -2.652369e-03    0.010250570
## 30    LSOA_CD E01006543  5.572251e-03    0.011076662
## 31    LSOA_CD E01006544  4.113301e-03    0.009585429
## 32    LSOA_CD E01006545  6.589273e-03    0.010250570
## 33    LSOA_CD E01006546 -1.232262e-02    0.010250570
## 34    LSOA_CD E01006547 -2.229952e-03    0.009585429
## 35    LSOA_CD E01006548 -7.984114e-03    0.010250570
## 36    LSOA_CD E01006549 -1.599363e-02    0.009585429
## 37    LSOA_CD E01006550 -3.678480e-02    0.011076662
## 38    LSOA_CD E01006551  1.452530e-02    0.010250570
## 39    LSOA_CD E01006552 -2.658222e-02    0.010250570
## 40    LSOA_CD E01006553 -3.396303e-02    0.009585429
## 41    LSOA_CD E01006554 -1.138770e-02    0.011076662
## 42    LSOA_CD E01006556 -1.733070e-02    0.009585429
## 43    LSOA_CD E01006557 -3.855496e-02    0.009585429
## 44    LSOA_CD E01006558 -2.028484e-02    0.009034957
## 45    LSOA_CD E01006560 -7.160643e-03    0.009585429
## 46    LSOA_CD E01006562 -2.022378e-02    0.010250570
## 47    LSOA_CD E01006563 -1.612804e-03    0.009585429
## 48    LSOA_CD E01006564  6.433300e-03    0.009585429
## 49    LSOA_CD E01006565  1.443978e-02    0.010250570
## 50    LSOA_CD E01006566  1.145556e-02    0.010250570
## 51    LSOA_CD E01006567  1.210408e-03    0.009034957
## 52    LSOA_CD E01006568  5.469830e-03    0.010250570
## 53    LSOA_CD E01006569  1.076650e-02    0.010250570
## 54    LSOA_CD E01006570  1.943674e-02    0.010250570
## 55    LSOA_CD E01006571  2.287266e-02    0.010250570
## 56    LSOA_CD E01006572 -7.578150e-03    0.011076662
## 57    LSOA_CD E01006573 -5.914207e-03    0.009585429
## 58    LSOA_CD E01006574  1.598141e-03    0.010250570
## 59    LSOA_CD E01006575  7.775546e-03    0.011076662
## 60    LSOA_CD E01006576  2.387109e-02    0.010250570
## 61    LSOA_CD E01006577  1.691041e-02    0.011076662
## 62    LSOA_CD E01006578  1.514708e-05    0.010250570
## 63    LSOA_CD E01006579  5.723570e-03    0.010250570
## 64    LSOA_CD E01006580  9.335757e-03    0.010250570
## 65    LSOA_CD E01006581  1.162124e-02    0.010250570
## 66    LSOA_CD E01006582  2.294152e-02    0.010250570
## 67    LSOA_CD E01006583  2.730759e-02    0.010250570
## 68    LSOA_CD E01006584  1.773775e-02    0.010250570
## 69    LSOA_CD E01006585  7.954465e-03    0.010250570
## 70    LSOA_CD E01006586  2.448851e-03    0.009034957
## 71    LSOA_CD E01006587  1.003304e-02    0.010250570
## 72    LSOA_CD E01006588  2.706666e-04    0.010250570
## 73    LSOA_CD E01006589  1.279328e-02    0.010250570
## 74    LSOA_CD E01006590 -1.125102e-02    0.010250570
## 75    LSOA_CD E01006591 -8.093073e-03    0.010250570
## 76    LSOA_CD E01006592  2.225210e-02    0.010250570
## 77    LSOA_CD E01006593 -1.544089e-02    0.010250570
## 78    LSOA_CD E01006594  1.890099e-02    0.011076662
## 79    LSOA_CD E01006595  1.474868e-02    0.009585429
## 80    LSOA_CD E01006596  1.081927e-02    0.010250570
## 81    LSOA_CD E01006597  1.678431e-02    0.010250570
## 82    LSOA_CD E01006598  1.433672e-02    0.010250570
## 83    LSOA_CD E01006599 -1.376750e-02    0.010250570
## 84    LSOA_CD E01006600  1.425505e-02    0.010250570
## 85    LSOA_CD E01006603  2.621962e-02    0.010250570
## 86    LSOA_CD E01006604  2.208490e-02    0.010250570
## 87    LSOA_CD E01006605  8.405288e-03    0.009585429
## 88    LSOA_CD E01006606  1.945978e-02    0.010250570
## 89    LSOA_CD E01006607  7.686896e-03    0.010250570
## 90    LSOA_CD E01006608  1.206272e-02    0.010250570
## 91    LSOA_CD E01006609  8.203711e-03    0.010250570
## 92    LSOA_CD E01006610 -8.160835e-03    0.010250570
## 93    LSOA_CD E01006611 -1.919262e-02    0.010250570
## 94    LSOA_CD E01006612 -3.947673e-03    0.009585429
## 95    LSOA_CD E01006613  7.070806e-03    0.010250570
## 96    LSOA_CD E01006614 -5.046058e-03    0.010250570
## 97    LSOA_CD E01006615 -7.479317e-03    0.011076662
## 98    LSOA_CD E01006616  1.152941e-02    0.009585429
## 99    LSOA_CD E01006617  1.603185e-03    0.010250570
## 100   LSOA_CD E01006618  1.574361e-02    0.010250570
## 101   LSOA_CD E01006619  7.781391e-03    0.009585429
## 102   LSOA_CD E01006620  2.284200e-02    0.010250570
## 103   LSOA_CD E01006621  4.145800e-02    0.009585429
## 104   LSOA_CD E01006622  9.421717e-03    0.010250570
## 105   LSOA_CD E01006623  1.927478e-02    0.011076662
## 106   LSOA_CD E01006624  7.192950e-03    0.010250570
## 107   LSOA_CD E01006625  2.613628e-02    0.010250570
## 108   LSOA_CD E01006626  2.731821e-02    0.010250570
## 109   LSOA_CD E01006627  1.650893e-02    0.011076662
## 110   LSOA_CD E01006628 -4.897909e-04    0.010250570
## 111   LSOA_CD E01006629  1.022897e-02    0.011076662
## 112   LSOA_CD E01006630 -3.036968e-03    0.011076662
## 113   LSOA_CD E01006632 -1.091781e-02    0.009585429
## 114   LSOA_CD E01006633 -9.671836e-03    0.010250570
## 115   LSOA_CD E01006637 -1.330671e-02    0.011076662
## 116   LSOA_CD E01006638 -2.762730e-03    0.010250570
## 117   LSOA_CD E01006639  2.726903e-04    0.010250570
## 118   LSOA_CD E01006640  1.906137e-02    0.009585429
## 119   LSOA_CD E01006641 -2.007917e-02    0.010250570
## 120   LSOA_CD E01006642 -7.694855e-03    0.010250570
## 121   LSOA_CD E01006643  5.820140e-03    0.009585429
## 122   LSOA_CD E01006644  1.845258e-03    0.008569590
## 123   LSOA_CD E01006645 -2.164218e-03    0.010250570
## 124   LSOA_CD E01006646 -1.013735e-02    0.009585429
## 125   LSOA_CD E01006647  1.869488e-03    0.010250570
## 126   LSOA_CD E01006648 -4.981537e-03    0.009034957
## 127   LSOA_CD E01006651  1.140958e-02    0.010250570
## 128   LSOA_CD E01006652  1.235935e-02    0.010250570
## 129   LSOA_CD E01006653  1.921725e-02    0.010250570
## 130   LSOA_CD E01006654 -4.376887e-03    0.010250570
## 131   LSOA_CD E01006655 -5.324569e-04    0.010250570
## 132   LSOA_CD E01006656  4.114258e-03    0.009585429
## 133   LSOA_CD E01006657 -7.872799e-03    0.010250570
## 134   LSOA_CD E01006658  4.181273e-04    0.010250570
## 135   LSOA_CD E01006659  2.014006e-02    0.010250570
## 136   LSOA_CD E01006660  3.377731e-03    0.010250570
## 137   LSOA_CD E01006661  4.249064e-03    0.009585429
## 138   LSOA_CD E01006662 -4.559984e-03    0.009034957
## 139   LSOA_CD E01006663 -4.986052e-04    0.010250570
## 140   LSOA_CD E01006664 -8.414957e-03    0.010250570
## 141   LSOA_CD E01006665  1.291251e-02    0.010250570
## 142   LSOA_CD E01006666  3.628415e-03    0.011076662
## 143   LSOA_CD E01006667  1.091174e-02    0.010250570
## 144   LSOA_CD E01006668  2.110586e-03    0.010250570
## 145   LSOA_CD E01006669 -3.686651e-03    0.010250570
## 146   LSOA_CD E01006670  1.167296e-02    0.010250570
## 147   LSOA_CD E01006671  9.358581e-03    0.011076662
## 148   LSOA_CD E01006672  5.062009e-03    0.009585429
## 149   LSOA_CD E01006673 -2.407697e-02    0.009585429
## 150   LSOA_CD E01006674 -1.829823e-02    0.009585429
## 151   LSOA_CD E01006675 -2.518753e-02    0.008569590
## 152   LSOA_CD E01006676 -1.697750e-02    0.010250570
## 153   LSOA_CD E01006677 -1.756856e-02    0.012141217
## 154   LSOA_CD E01006678  1.211965e-02    0.009585429
## 155   LSOA_CD E01006679 -1.614432e-02    0.009034957
## 156   LSOA_CD E01006680  2.170238e-02    0.010250570
## 157   LSOA_CD E01006681  9.028126e-03    0.010250570
## 158   LSOA_CD E01006682  2.732908e-02    0.011076662
## 159   LSOA_CD E01006683  2.411389e-02    0.010250570
## 160   LSOA_CD E01006684  1.630417e-02    0.009034957
## 161   LSOA_CD E01006685  7.291282e-03    0.010250570
## 162   LSOA_CD E01006686  2.288973e-02    0.011076662
## 163   LSOA_CD E01006687  8.607007e-03    0.008569590
## 164   LSOA_CD E01006688 -4.810441e-03    0.009585429
## 165   LSOA_CD E01006689  6.103415e-03    0.010250570
## 166   LSOA_CD E01006690 -2.293878e-02    0.009585429
## 167   LSOA_CD E01006691 -1.887900e-02    0.010250570
## 168   LSOA_CD E01006692 -7.986259e-03    0.009034957
## 169   LSOA_CD E01006693  8.118563e-04    0.009585429
## 170   LSOA_CD E01006694 -2.279981e-02    0.009585429
## 171   LSOA_CD E01006695 -2.794374e-02    0.008569590
## 172   LSOA_CD E01006696 -1.542892e-02    0.009585429
## 173   LSOA_CD E01006697 -1.037761e-02    0.009585429
## 174   LSOA_CD E01006698  2.472150e-03    0.009585429
## 175   LSOA_CD E01006699 -3.348621e-03    0.010250570
## 176   LSOA_CD E01006700 -9.121578e-03    0.010250570
## 177   LSOA_CD E01006701  9.023180e-05    0.010250570
## 178   LSOA_CD E01006702 -5.752432e-03    0.010250570
## 179   LSOA_CD E01006703 -1.002697e-02    0.009034957
## 180   LSOA_CD E01006705  3.264763e-05    0.009585429
## 181   LSOA_CD E01006706  9.094105e-03    0.010250570
## 182   LSOA_CD E01006707  5.904415e-03    0.010250570
## 183   LSOA_CD E01006708 -3.727901e-03    0.009585429
## 184   LSOA_CD E01006709 -5.584794e-03    0.010250570
## 185   LSOA_CD E01006710  9.084507e-03    0.010250570
## 186   LSOA_CD E01006711  1.068391e-02    0.010250570
## 187   LSOA_CD E01006712 -6.659937e-03    0.011076662
## 188   LSOA_CD E01006713 -3.494552e-03    0.010250570
## 189   LSOA_CD E01006716 -3.972287e-03    0.010250570
## 190   LSOA_CD E01006717  1.611413e-02    0.010250570
## 191   LSOA_CD E01006718  7.096009e-03    0.010250570
## 192   LSOA_CD E01006719  9.482573e-03    0.010250570
## 193   LSOA_CD E01006720 -3.239984e-02    0.009034957
## 194   LSOA_CD E01006721 -1.646945e-02    0.009585429
## 195   LSOA_CD E01006722 -3.550460e-02    0.009585429
## 196   LSOA_CD E01006723 -2.322143e-02    0.010250570
## 197   LSOA_CD E01006724 -2.578817e-02    0.010250570
## 198   LSOA_CD E01006725 -1.290198e-02    0.010250570
## 199   LSOA_CD E01006726 -1.882985e-02    0.010250570
## 200   LSOA_CD E01006727 -9.800065e-03    0.010250570
## 201   LSOA_CD E01006728 -2.019934e-02    0.009585429
## 202   LSOA_CD E01006729 -8.322356e-03    0.011076662
## 203   LSOA_CD E01006730  7.501505e-03    0.010250570
## 204   LSOA_CD E01006731 -1.913531e-04    0.011076662
## 205   LSOA_CD E01006732  9.207381e-03    0.010250570
## 206   LSOA_CD E01006734 -4.517331e-03    0.010250570
## 207   LSOA_CD E01006735 -2.352048e-03    0.010250570
## 208   LSOA_CD E01006736  8.096132e-03    0.011076662
## 209   LSOA_CD E01006737  2.479464e-02    0.010250570
## 210   LSOA_CD E01006738  1.730998e-03    0.010250570
## 211   LSOA_CD E01006739 -9.628008e-03    0.009585429
## 212   LSOA_CD E01006740 -1.484395e-02    0.010250570
## 213   LSOA_CD E01006741  7.097818e-03    0.009585429
## 214   LSOA_CD E01006742  1.106181e-02    0.010250570
## 215   LSOA_CD E01006743 -6.391225e-03    0.008569590
## 216   LSOA_CD E01006744 -6.472019e-03    0.009585429
## 217   LSOA_CD E01006745 -6.211850e-03    0.009034957
## 218   LSOA_CD E01006746 -1.768134e-03    0.010250570
## 219   LSOA_CD E01006747  3.071708e-02    0.008569590
## 220   LSOA_CD E01006748 -3.060059e-02    0.010250570
## 221   LSOA_CD E01006751 -1.602370e-02    0.009034957
## 222   LSOA_CD E01006752 -4.895420e-03    0.012141217
## 223   LSOA_CD E01006753  4.636644e-03    0.010250570
## 224   LSOA_CD E01006754 -1.171528e-02    0.009585429
## 225   LSOA_CD E01006755 -7.826194e-03    0.010250570
## 226   LSOA_CD E01006756 -5.273068e-03    0.010250570
## 227   LSOA_CD E01006757 -1.858317e-02    0.010250570
## 228   LSOA_CD E01006758 -1.506321e-03    0.010250570
## 229   LSOA_CD E01006759  6.624059e-03    0.012141217
## 230   LSOA_CD E01006760 -1.579089e-02    0.009585429
## 231   LSOA_CD E01006761  1.686619e-03    0.009585429
## 232   LSOA_CD E01006762  3.442153e-03    0.010250570
## 233   LSOA_CD E01006763  6.350352e-03    0.010250570
## 234   LSOA_CD E01006764 -7.525493e-03    0.010250570
## 235   LSOA_CD E01006765  1.343083e-02    0.010250570
## 236   LSOA_CD E01006766 -1.184864e-02    0.010250570
## 237   LSOA_CD E01006767 -8.660403e-03    0.010250570
## 238   LSOA_CD E01006768  6.421767e-03    0.010250570
## 239   LSOA_CD E01006769 -1.394706e-03    0.010250570
## 240   LSOA_CD E01006770  9.889624e-03    0.010250570
## 241   LSOA_CD E01006771  5.493938e-04    0.010250570
## 242   LSOA_CD E01006772  1.181820e-02    0.011076662
## 243   LSOA_CD E01006773  1.920767e-02    0.010250570
## 244   LSOA_CD E01006774  1.400108e-02    0.010250570
## 245   LSOA_CD E01006775  5.768256e-03    0.010250570
## 246   LSOA_CD E01006776 -1.534655e-02    0.009034957
## 247   LSOA_CD E01006778 -1.793883e-03    0.009034957
## 248   LSOA_CD E01006779  1.165406e-02    0.009034957
## 249   LSOA_CD E01006780  6.661440e-03    0.010250570
## 250   LSOA_CD E01006781  1.349923e-02    0.011076662
## 251   LSOA_CD E01006782  9.569002e-03    0.010250570
## 252   LSOA_CD E01006783 -2.737926e-05    0.010250570
## 253   LSOA_CD E01006784 -5.673674e-03    0.011076662
## 254   LSOA_CD E01006785  1.736877e-03    0.009585429
## 255   LSOA_CD E01006786  1.143319e-02    0.010250570
## 256   LSOA_CD E01006787  2.719366e-02    0.010250570
## 257   LSOA_CD E01006788  8.298214e-03    0.010250570
## 258   LSOA_CD E01006790 -7.313847e-03    0.010250570
## 259   LSOA_CD E01006791  3.309313e-03    0.009585429
## 260   LSOA_CD E01006792  9.025187e-03    0.010250570
## 261   LSOA_CD E01006793  5.334619e-04    0.010250570
## 262   LSOA_CD E01006794  8.117879e-03    0.010250570
## 263   LSOA_CD E01006795  1.727118e-02    0.010250570
## 264   LSOA_CD E01006796  2.474855e-02    0.010250570
## 265   LSOA_CD E01006797  1.439675e-02    0.010250570
## 266   LSOA_CD E01006798  2.889985e-02    0.010250570
## 267   LSOA_CD E01006799  1.219872e-02    0.009034957
## 268   LSOA_CD E01006800  3.785718e-02    0.009585429
## 269   LSOA_CD E01006801  1.825128e-02    0.010250570
## 270   LSOA_CD E01032505  1.620683e-02    0.010250570
## 271   LSOA_CD E01032506 -1.339253e-02    0.010250570
## 272   LSOA_CD E01032507 -6.713807e-03    0.010250570
## 273   LSOA_CD E01032508 -9.880200e-03    0.010250570
## 274   LSOA_CD E01032509 -6.913134e-03    0.010250570
## 275   LSOA_CD E01032510 -2.220786e-03    0.009034957
## 276   LSOA_CD E01032511  1.664835e-02    0.010250570
## 277   LSOA_CD E01033747 -7.703295e-03    0.011076662
## 278   LSOA_CD E01033748 -2.991864e-02    0.009034957
## 279   LSOA_CD E01033749 -3.613846e-02    0.013586635
## 280   LSOA_CD E01033750 -3.348848e-02    0.008569590
## 281   LSOA_CD E01033751 -6.830149e-03    0.011076662
## 282   LSOA_CD E01033752 -4.916580e-02    0.009585429
## 283   LSOA_CD E01033753 -4.399901e-02    0.010250570
## 284   LSOA_CD E01033754 -2.636405e-02    0.008569590
## 285   LSOA_CD E01033755 -4.229885e-02    0.010250570
## 286   LSOA_CD E01033756 -3.572738e-02    0.010250570
## 287   LSOA_CD E01033757 -3.081787e-02    0.011076662
## 288   LSOA_CD E01033758 -1.541517e-03    0.010250570
## 289   LSOA_CD E01033759 -9.322819e-03    0.010250570
## 290   LSOA_CD E01033760 -2.644491e-02    0.011076662
## 291   LSOA_CD E01033761 -4.721788e-02    0.009034957
## 292   LSOA_CD E01033762 -1.453108e-02    0.012141217
## 293   LSOA_CD E01033763 -1.284377e-02    0.009585429
## 294   LSOA_CD E01033764 -1.591561e-04    0.007238884
## 295   LSOA_CD E01033765 -1.930591e-03    0.011076662
## 296   LSOA_CD E01033766 -1.677725e-02    0.011076662
## 297   LSOA_CD E01033767 -1.025712e-02    0.011076662
## 298   LSOA_CD E01033768 -2.315115e-02    0.011076662

With exracting the standard errors, we are able to see how the multievel models have a large average of values in the outcome variable.

Visualizing the multilevel model to identify which groups have larger-than-average values of the outcome variable

LSOA_re <- REsim(model.0)
head(LSOA_re)
##   groupFctr   groupID        term         mean       median          sd
## 1   LSOA_CD E01006512 (Intercept) -0.032556935 -0.031104142 0.009661493
## 2   LSOA_CD E01006513 (Intercept) -0.033161739 -0.033161435 0.007786633
## 3   LSOA_CD E01006514 (Intercept) -0.006859774 -0.006194372 0.008786558
## 4   LSOA_CD E01006515 (Intercept) -0.022878719 -0.022667317 0.009667960
## 5   LSOA_CD E01006518 (Intercept)  0.004371021  0.004067831 0.009325570
## 6   LSOA_CD E01006519 (Intercept)  0.013687944  0.012488494 0.010294510

Now a caterpillar graph was created to visualise the mean of each LSOA random effect and the associated 95% confidence interval

p <- plotREsim(LSOA_re)
p

The caterpillar graph show the interesting findings of of the 95% confidence intervals and how they overlap with each other. The unpaid provsional care varies accross the graph significantly in the LSOA. Within the LSOA there shows to be a positive and negative effect.

Multilevel Model with predictor variables

The percentage of Provisional Care within Males, Age 20-24, having car availability and a Deprivation of education.

model.1 <- lmer(Care_Prop ~ c_Male + c_Age20.24 + c_CarAvail + IMD_educat + (1|LSOA_CD), data = OAData)

summary(model.1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Care_Prop ~ c_Male + c_Age20.24 + c_CarAvail + IMD_educat + (1 |  
##     LSOA_CD)
##    Data: OAData
## 
## REML criterion at convergence: -6562.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8972 -0.6012 -0.0566  0.5480  9.2188 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  LSOA_CD  (Intercept) 0.0002855 0.01690 
##  Residual             0.0007122 0.02669 
## Number of obs: 1584, groups:  LSOA_CD, 298
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept)  7.894e-02  3.941e-03  20.030
## c_Male       1.590e-04  2.237e-05   7.109
## c_Age20.24  -1.185e-04  2.502e-05  -4.735
## c_CarAvail   2.000e-05  2.556e-05   0.782
## IMD_educat  -2.300e-04  6.724e-05  -3.420
## 
## Correlation of Fixed Effects:
##            (Intr) c_Male c_A20. c_CrAv
## c_Male     -0.190                     
## c_Age20.24 -0.009 -0.710              
## c_CarAvail -0.561 -0.542  0.412       
## IMD_educat -0.711 -0.283  0.248  0.539

Calculate the VPC

VPC <- 0.0002855 / (0.0002855 + 0.0007122)
VPC
## [1] 0.2861582
VPC = 29%

The variance gives a good idea that using this model should be a reason to continue with the MLM.

The merTools() package allows to find the fixed effects and the associated statistical uncertain measures and be calculated

fe.eff <- FEsim(model.1)
fe.eff
##          term          mean        median           sd
## 1 (Intercept)  7.871863e-02  7.888806e-02 3.978562e-03
## 2      c_Male  1.602584e-04  1.613549e-04 2.244197e-05
## 3  c_Age20.24 -1.187510e-04 -1.219885e-04 2.350806e-05
## 4  c_CarAvail  2.070127e-05  1.856137e-05 2.421730e-05
## 5  IMD_educat -2.297125e-04 -2.280328e-04 6.892201e-05

Visualize the fixed effects

plotFEsim(fe.eff) +
  theme_bw() +
  labs(x = "Median model coefficients and CIs", y = "Provisional Care")

The graph shows how much income deprivation varies negatively between the other variables and how males have a stronger positive effect. The notations are ranged from -4.0004 to 2.0004.

Another way to visualise the LSOA-level random effects is by geographically importing the LSOA shapefile to show a more potential spatial pattern of unpaid provisional car in Liveprool.

First Import the LSOA Spatial data

LSOA <- readOGR(dsn = "/Users/Ernie/Desktop/Spatial Analysis/Assignment 1/LSOA.shp", stringsAsFactors = FALSE)
## OGR data source with driver: ESRI Shapefile 
## Source: "/Users/Ernie/Desktop/Spatial Analysis/Assignment 1/LSOA.shp", layer: "LSOA"
## with 298 features
## It has 22 fields
## Integer64 fields read as strings:  IMD_rank IMD_Number c_Age20-24 c_Pop c_Male c_Female c_CarAvail c_LilCare c_LotCare
LSOA@data <- merge(LSOA@data, LSOA_re, by.x = "LSOA_CD", by.y = "groupID",
                   all.x = TRUE)
head(LSOA@data)
##     LSOA_CD   MSOA_CD    LAD_CD IMD_rank IMD_score IMD_income IMD_employ
## 1 E01006512 E02001377 E08000012    10518     25.61       0.10       0.08
## 2 E01006513 E02006932 E08000012    10339     25.91       0.04       0.03
## 3 E01006514 E02001383 E08000012     5247     37.64       0.19       0.15
## 4 E01006515 E02001383 E08000012     1019     58.99       0.43       0.30
## 5 E01006518 E02001390 E08000012      662     63.37       0.43       0.34
## 6 E01006519 E02001402 E08000012    23033     10.98       0.05       0.08
##   IMD_educat IMD_health IMD_crime IMD_housin IMD_living IMD_idaci
## 1      10.06       1.19     -0.20      24.49      68.91      0.16
## 2      20.13       0.58      1.50      25.15      85.48      0.21
## 3      15.50       1.86      0.74      21.85      58.90      0.23
## 4      33.51       1.90      1.16      17.40      29.78      0.46
## 5      49.90       2.24      0.67      15.52      31.03      0.50
## 6       1.76       0.26      0.11      11.37      26.35      0.05
##   IMD_idaopi IMD_Number c_Age20.24 c_Pop c_Male c_Female c_CarAvail
## 1       0.31          1        615  1420   1070      810        314
## 2       0.20          1       1366  1691   1461     1480        353
## 3       0.48          1        586  1758   1177      931        466
## 4       0.76          1        141  1208    595      613        218
## 5       0.52          1        120  1630    843      853        345
## 6       0.08          1         56  1286    628      658        685
##   c_LilCare c_LotCare groupFctr        term         mean       median
## 1        66        10   LSOA_CD (Intercept) -0.032556935 -0.031104142
## 2        74         7   LSOA_CD (Intercept) -0.033161739 -0.033161435
## 3       134        21   LSOA_CD (Intercept) -0.006859774 -0.006194372
## 4        46        27   LSOA_CD (Intercept) -0.022878719 -0.022667317
## 5        88        72   LSOA_CD (Intercept)  0.004371021  0.004067831
## 6       110        31   LSOA_CD (Intercept)  0.013687944  0.012488494
##            sd
## 1 0.009661493
## 2 0.007786633
## 3 0.008786558
## 4 0.009667960
## 5 0.009325570
## 6 0.010294510

Then, using spplot() function to map the random effect estimates

temp <- LSOA@data$mean
brks.temp <- classIntervals(temp, n = 5, style = "quantile")
brks.temp <- round(brks.temp$brks, digits = 2)
brks.temp[1] <- brks.temp[1] - 0.01
brks.temp[5 + 1] <- brks.temp[5 +1] + 0.01
# Adding the scale bar and legend
xx <- LSOA@bbox

scalebar <- list("SpatialPolygonsRescale", layout.scale.bar(),
                 offset = c(min(xx[1,] + 1000),xx[2,1] + 1000),
                 scale = 5000, fill = c("transparent", "black"))
text1 <- list("sp.text", c(min(xx[1,]) + 1000,xx[2,1] + 1500),
              "0")
text2 <- list("sp.text", c(min(xx[1,]) + 6000,xx[2,1] + 1500),
              "5km")
northarrow <- list("SpatialPolygonsRescale", layout.north.arrow(),
                   offset = c(min(xx[1,]) + 2000,xx[2,1] + 2000),
                   scale = 1500)

## Plot
spplot(LSOA, "mean", sp.layout = list(scalebar, text1, text2, northarrow),
       at = brks.temp, col.regions = brewer.pal(5, "YlOrRd"),
       col = "transparent", pretty = TRUE,
       colorkey = list(labels=list(at=brks.temp)))

The final results show how a magority of people that have unpaid provisional care within the age group of 20-24 are in the east and south east area of Liverpool which consisist of a high suburban area.

Modeling II

A random sample vnvestigation of varying relationships between Car Availability and people with provision of unpaid care

sample.20 <- sample(unique(OAData$LSOA_CD), 20, replace = FALSE)
ggplot(OAData[OAData$LSOA_CD %in% sample.20,], aes(x = c_CarAvail, y = Care_Prop)) +
  geom_point() + 
  geom_smooth(method = "lm", se = FALSE) +
  facet_wrap(~ LSOA_CD) + 
  xlab("Car Availability") +
  ylab("Percent of Provisional Care") +
  theme_bw()

The positive and negative slopes in each different LSOAs can be produced later on to show a random slope MLM, but for now the intercepts are a good enough conclusion that shows a reason for producing a Multilevel Model within different Output Areas.

References

Fotheringham, A S and D W S Wong. “The Modifiable Areal Unit Problem In Multivariate Statistical Analysis”. Environment and Planning A 23.7 (1991): 1025-1044. Web.

Snijders, Tom A. B and R. J Bosker. Multilevel Analysis. 1st ed. Los Angeles: SAGE, 2012. Print.