## [1] 0.9052671

##             Hospital.Ownership Emergency.Services    Hospital     
##  Government          : 449     Min.   :0.0000     Min.   : 10001  
##  Physician           :  15     1st Qu.:1.0000     1st Qu.:110044  
##  Proprietary         : 576     Median :1.0000     Median :250095  
##  Voluntary Non-Profit:1819     Mean   :0.9762     Mean   :258835  
##                                3rd Qu.:1.0000     3rd Qu.:390112  
##                                Max.   :1.0000     Max.   :670098  
##                                                                   
##   Cleanliness        Nurses         Doctors       HelpWhenNeeded 
##  Min.   :50.00   Min.   :56.00   Min.   : 60.00   Min.   :37.00  
##  1st Qu.:67.00   1st Qu.:76.00   1st Qu.: 78.00   1st Qu.:60.00  
##  Median :72.00   Median :79.00   Median : 80.00   Median :65.00  
##  Mean   :71.65   Mean   :78.49   Mean   : 80.29   Mean   :65.17  
##  3rd Qu.:76.00   3rd Qu.:81.00   3rd Qu.: 83.00   3rd Qu.:70.00  
##  Max.   :98.00   Max.   :99.00   Max.   :100.00   Max.   :96.00  
##                                                                  
##   PainControl      ExplainMeds     RecoveryInfo   UnderstandCare
##  Min.   : 51.00   Min.   :23.00   Min.   : 66.0   Min.   :11.0  
##  1st Qu.: 67.00   1st Qu.:60.00   1st Qu.: 85.0   1st Qu.:47.0  
##  Median : 70.00   Median :63.00   Median : 87.0   Median :51.0  
##  Mean   : 69.84   Mean   :63.27   Mean   : 86.7   Mean   :50.6  
##  3rd Qu.: 72.00   3rd Qu.:66.00   3rd Qu.: 89.0   3rd Qu.:54.0  
##  Max.   :100.00   Max.   :97.00   Max.   :100.0   Max.   :98.0  
##                                                                 
##      Quiet         Recommend          HAI2             HAI3        
##  Min.   :32.00   Min.   :24.00   Min.   :0.0000   Min.   :   0.00  
##  1st Qu.:54.00   1st Qu.:65.00   1st Qu.:0.0000   1st Qu.:   0.00  
##  Median :60.00   Median :71.00   Median :0.6485   Median :  15.62  
##  Mean   :59.65   Mean   :70.32   Mean   :0.7988   Mean   :  23.54  
##  3rd Qu.:65.00   3rd Qu.:77.00   3rd Qu.:1.1963   3rd Qu.:  34.48  
##  Max.   :93.00   Max.   :96.00   Max.   :8.9820   Max.   :1000.00  
##                                  NA's   :25       NA's   :167      
##       HAI4               HAI5              HAI6           Aggregate_Inf   
##  Min.   :   0.000   Min.   :0.00000   Min.   :   0.0000   Min.   :0.0000  
##  1st Qu.:   0.000   1st Qu.:0.00000   1st Qu.:   0.3215   1st Qu.:0.2290  
##  Median :   0.000   Median :0.02690   Median :   0.5662   Median :0.3634  
##  Mean   :   9.380   Mean   :0.04367   Mean   :   1.0074   Mean   :0.3714  
##  3rd Qu.:   9.434   3rd Qu.:0.06692   3rd Qu.:   0.8181   3rd Qu.:0.4971  
##  Max.   :1000.000   Max.   :2.70270   Max.   :1000.0000   Max.   :7.4906  
##  NA's   :272        NA's   :2         NA's   :3                           
##   PAYM_30_AMI      PAYM_30_HF      PAYM_30_PN     PayPerBenAvg  
##  Min.   :17887   Min.   :12199   Min.   :10204   Min.   :10415  
##  1st Qu.:21930   1st Qu.:15107   1st Qu.:13954   1st Qu.:16523  
##  Median :22956   Median :15986   Median :14748   Median :17670  
##  Mean   :23023   Mean   :16096   Mean   :14787   Mean   :17395  
##  3rd Qu.:24071   3rd Qu.:16955   3rd Qu.:15546   3rd Qu.:18589  
##  Max.   :30334   Max.   :22416   Max.   :20802   Max.   :23347  
##  NA's   :652     NA's   :107     NA's   :93      NA's   :69     
##  COMP_HIP_KNEE   PSI_12_POSTOP_PULMEMB_DVT PSI_13_POST_SEPSIS
##  Min.   :1.500   Min.   : 1.390            Min.   : 4.50     
##  1st Qu.:2.700   1st Qu.: 3.880            1st Qu.: 9.04     
##  Median :3.000   Median : 4.770            Median : 9.79     
##  Mean   :3.058   Mean   : 5.071            Mean   :10.28     
##  3rd Qu.:3.400   3rd Qu.: 5.800            3rd Qu.:11.29     
##  Max.   :6.000   Max.   :20.880            Max.   :27.96     
##  NA's   :574     NA's   :106               NA's   :684       
##  PSI_14_POSTOP_DEHIS PSI_15_ACC_LAC   PSI_3_ULCER      PSI_4_SURG_COMP 
##  Min.   :1.180       Min.   :0.320   Min.   : 0.0300   Min.   : 70.79  
##  1st Qu.:2.130       1st Qu.:1.120   1st Qu.: 0.2000   1st Qu.:124.39  
##  Median :2.230       Median :1.370   Median : 0.3400   Median :135.69  
##  Mean   :2.321       Mean   :1.442   Mean   : 0.4509   Mean   :136.82  
##  3rd Qu.:2.480       3rd Qu.:1.690   3rd Qu.: 0.4600   3rd Qu.:148.33  
##  Max.   :4.980       Max.   :6.180   Max.   :10.3500   Max.   :212.16  
##  NA's   :418         NA's   :2       NA's   :8         NA's   :1107    
##  PSI_6_IAT_PTX     PSI_7_CVCBI     PSI_8_POST_HIP PSI_90_SAFETY  
##  Min.   :0.1900   Min.   :0.0300   Min.   :0.06   Min.   :0.440  
##  1st Qu.:0.3600   1st Qu.:0.1300   1st Qu.:0.06   1st Qu.:0.780  
##  Median :0.3900   Median :0.1500   Median :0.06   Median :0.870  
##  Mean   :0.4066   Mean   :0.1691   Mean   :0.06   Mean   :0.892  
##  3rd Qu.:0.4400   3rd Qu.:0.1700   3rd Qu.:0.06   3rd Qu.:0.970  
##  Max.   :0.8800   Max.   :1.2300   Max.   :0.06   Max.   :2.140  
##  NA's   :2        NA's   :4        NA's   :141    NA's   :2      
##   MORT_30_AMI     MORT_30_COPD      MORT_30_HF      MORT_30_PN   
##  Min.   : 9.40   Min.   : 4.600   Min.   : 6.60   Min.   : 8.70  
##  1st Qu.:13.20   1st Qu.: 7.300   1st Qu.:11.10   1st Qu.:14.90  
##  Median :14.00   Median : 7.900   Median :12.00   Median :16.20  
##  Mean   :14.06   Mean   : 8.073   Mean   :12.05   Mean   :16.35  
##  3rd Qu.:14.90   3rd Qu.: 8.750   3rd Qu.:13.00   3rd Qu.:17.70  
##  Max.   :20.00   Max.   :14.100   Max.   :17.80   Max.   :26.80  
##  NA's   :618     NA's   :120      NA's   :93      NA's   :62     
##   MORT_30_STK    READM_30_AMI   READM_30_COPD    READM_30_HF   
##  Min.   : 9.3   Min.   :13.10   Min.   :15.90   Min.   :16.30  
##  1st Qu.:13.8   1st Qu.:16.30   1st Qu.:19.10   1st Qu.:20.90  
##  Median :14.8   Median :16.90   Median :19.90   Median :21.90  
##  Mean   :14.9   Mean   :16.89   Mean   :20.01   Mean   :21.99  
##  3rd Qu.:15.9   3rd Qu.:17.50   3rd Qu.:20.80   3rd Qu.:23.00  
##  Max.   :23.3   Max.   :20.60   Max.   :26.10   Max.   :31.30  
##  NA's   :443    NA's   :804     NA's   :103     NA's   :89     
##  READM_30_HIP_KNEE READM_30_HOSP_WIDE  READM_30_PN     READM_30_STK  
##  Min.   :2.900     Min.   :10.80      Min.   :12.90   Min.   : 9.10  
##  1st Qu.:4.300     1st Qu.:15.00      1st Qu.:16.10   1st Qu.:11.90  
##  Median :4.600     Median :15.50      Median :17.10   Median :12.50  
##  Mean   :4.624     Mean   :15.61      Mean   :17.22   Mean   :12.58  
##  3rd Qu.:5.000     3rd Qu.:16.10      3rd Qu.:18.20   3rd Qu.:13.20  
##  Max.   :7.800     Max.   :19.90      Max.   :24.70   Max.   :17.70  
##  NA's   :565       NA's   :1          NA's   :56      NA's   :484    
##  OP_12.eLab_Rec   OP_17_TrackMedInfo OP_25_CHECK_OP   SM_PART_GEN_SURG
##  Min.   :0.0000   Min.   :0.0000     Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000     1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000     Median :1.0000   Median :0.0000  
##  Mean   :0.9157   Mean   :0.8779     Mean   :0.9713   Mean   :0.2648  
##  3rd Qu.:1.0000   3rd Qu.:1.0000     3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000     Max.   :1.0000   Max.   :1.0000  
##                                                                       
##  SM_PART_NURSE    SM_SS_CHECK_IP    SumStruct     ED_IP_Throughput
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :  76.0  
##  1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:4.000   1st Qu.: 228.0  
##  Median :1.0000   Median :1.000   Median :5.000   Median : 270.0  
##  Mean   :0.5498   Mean   :0.979   Mean   :4.559   Mean   : 289.2  
##  3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:5.000   3rd Qu.: 330.0  
##  Max.   :1.0000   Max.   :1.000   Max.   :6.000   Max.   :1030.0  
##                                                   NA's   :29      
##       EDV          IMM__PT        IMM_Workers     ED_OP_Throughput
##  Min.   :1.00   Min.   :  5.00   Min.   : 18.00   Min.   : 55.0   
##  1st Qu.:2.00   1st Qu.: 94.00   1st Qu.: 78.00   1st Qu.:123.0   
##  Median :2.00   Median : 97.00   Median : 89.00   Median :145.0   
##  Mean   :2.43   Mean   : 94.93   Mean   : 84.57   Mean   :150.7   
##  3rd Qu.:3.00   3rd Qu.: 99.00   3rd Qu.: 96.00   3rd Qu.:172.0   
##  Max.   :4.00   Max.   :100.00   Max.   :100.00   Max.   :436.0   
##  NA's   :71                                       NA's   :66      
##    TimeToEval     TimeToPainMed   LeftBeforeTreat   AspirinCP     
##  Min.   :  0.00   Min.   : 12.0   Min.   : 0.00   Min.   : 36.00  
##  1st Qu.: 16.00   1st Qu.: 41.0   1st Qu.: 1.00   1st Qu.: 94.00  
##  Median : 24.00   Median : 52.0   Median : 1.00   Median : 97.00  
##  Mean   : 27.02   Mean   : 53.8   Mean   : 1.95   Mean   : 95.74  
##  3rd Qu.: 34.00   3rd Qu.: 65.0   3rd Qu.: 3.00   3rd Qu.:100.00  
##  Max.   :140.00   Max.   :172.0   Max.   :29.00   Max.   :100.00  
##  NA's   :68       NA's   :105     NA's   :71      NA's   :1265    
##    TimeToECG     ElectiveEarlyDelivery AppropStrokeCare    HospVTE      
##  Min.   : 0.00   Min.   : 0.000        Min.   :  0.00   Min.   : 0.000  
##  1st Qu.: 5.00   1st Qu.: 0.000        1st Qu.: 90.00   1st Qu.: 0.000  
##  Median : 7.00   Median : 1.000        Median : 96.00   Median : 0.000  
##  Mean   : 8.19   Mean   : 2.044        Mean   : 91.59   Mean   : 1.889  
##  3rd Qu.:10.00   3rd Qu.: 3.000        3rd Qu.:100.00   3rd Qu.: 2.000  
##  Max.   :65.00   Max.   :85.000        Max.   :100.00   Max.   :87.000  
##  NA's   :1240    NA's   :584           NA's   :1940     NA's   :1687    
##  MeaningfulUse                           MedImage        Endosc   
##  Min.   :0.000   Above the national average  : 345   Min.   :  0  
##  1st Qu.:1.000   Below the national average  : 323   1st Qu.: 72  
##  Median :1.000   Not Available               : 443   Median : 90  
##  Mean   :0.958   Same as the national average:1748   Mean   : 80  
##  3rd Qu.:1.000                                       3rd Qu.: 97  
##  Max.   :1.000                                       Max.   :100  
##                                                      NA's   :334
## Warning in `[<-.factor`(`*tmp*`, iseq, value = c(1390, 1390, 1390, 1390, :
## invalid factor level, NA generated

## Warning in `[<-.factor`(`*tmp*`, iseq, value = c(1390, 1390, 1390, 1390, :
## invalid factor level, NA generated

## Warning in `[<-.factor`(`*tmp*`, iseq, value = c(1390, 1390, 1390, 1390, :
## invalid factor level, NA generated

Now Check Correlations and Perform Groupings

##Numeric Factors
DClean<-DClean[-37]

NF<-data.frame(DClean[6:70],"Endosc"=DClean$Endosc)

Binary<-data.frame("Own"=DClean$Hospital.Ownership,NF[c(1,18,45,46,47,48,49,50,60,61,62,63,64,65)])

NF<-NF[-c(1,18,45,46,47,48,49,50,60,61,62,63,64,65)]
NF<-NF[-1]
NF<-NF[-10]
###################################

#Add Data Transforms here

#Sqrt HAI2
NF$HAI2<-sqrt(NF$HAI2)
#Log Transform HIPKNEWW
NF$COMP_HIP_KNEE<-log(NF$COMP_HIP_KNEE)
NF$PSI_12_POSTOP_PULMEMB_DVT<-log(NF$PSI_12_POSTOP_PULMEMB_DVT)
NF$PSI_13_POST_SEPSIS<-log(NF$PSI_13_POST_SEPSIS)
NF$PSI_14_POSTOP_DEHIS<-log(NF$PSI_14_POSTOP_DEHIS)
NF$PSI_3_ULCER<-log(NF$PSI_3_ULCER)
NF$PSI_4_SURG_COMP<-log(NF$PSI_4_SURG_COMP)
NF$PSI_6_IAT_PTX<-log(NF$PSI_6_IAT_PTX)
NF$PSI_7_CVCBI<-log(NF$PSI_7_CVCBI)
NF$PSI_90_SAFETY<-log(NF$PSI_90_SAFETY)
Binary1<-data.frame(Binary,"PSI90"=NF$PSI_90_SAFETY)
NF<-NF[-28]
NF<-NF[-29]  ### COPD Mort is not at all associated.



########################
cormat<-as.matrix(cor(NF))

library(corrplot)
corrplot(as.matrix(cor(NF)),method="shade",order="FPC")

###Scale Columns to reduce heteroscleradicity 

NF<-as.data.frame(scale(as.matrix(NF)))

NFeigen<-eigen(cormat)
Nfact<-sum(as.numeric(NFeigen$values >=1))

###13 Eigenvalues above Zero, let's run factor analysis on these Numeric Data to reduce our dimensions
library(nFactors)
## Loading required package: MASS
## Loading required package: psych
## Loading required package: boot
## 
## Attaching package: 'boot'
## The following object is masked from 'package:psych':
## 
##     logit
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
## 
##     melanoma
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel

ev <- NFeigen # get eigenvalues
ap <- parallel(subject=nrow(NF),var=ncol(NF),
               rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS) 

componentAxis(cor(NF,use = "pairwise.complete.obs"), nFactors=13)
## $values
##  [1] 7.756174 3.069090 2.985654 2.705625 1.924192 1.615359 1.454684
##  [8] 1.371761 1.102204 1.063253 1.041435 1.022941 1.009412
## 
## $varExplained
##  [1] 16.16  6.39  6.22  5.64  4.01  3.37  3.03  2.86  2.30  2.22  2.17
## [12]  2.13  2.10
## 
## $cumVarExplained
##  [1] 16.16 22.55 28.77 34.41 38.42 41.79 44.82 47.68 49.98 52.20 54.37
## [12] 56.50 58.60
## 
## $loadings
##               [,1]         [,2]          [,3]          [,4]         [,5]
##  [1,] -0.691879279  0.059261854  0.1926766303  0.0961407573 -0.056046800
##  [2,] -0.817398212  0.040272432  0.3472392439  0.2725983966  0.075094249
##  [3,] -0.756448238  0.215313581  0.1192010878  0.2667582232 -0.037315917
##  [4,] -0.831106823  0.127661585  0.2144707897  0.1524373919 -0.008116201
##  [5,] -0.761081590  0.056709773  0.3281968966  0.2355706235  0.011938782
##  [6,] -0.761527462  0.085577884  0.2573711694  0.2637096666  0.049006122
##  [7,] -0.614419200 -0.236034479  0.1861196438  0.1290786782  0.268329002
##  [8,] -0.674600360 -0.171211236  0.3422927642  0.3163498572  0.114734756
##  [9,] -0.601195347  0.310815018  0.1081541539  0.1356690315 -0.114093867
## [10,]  0.319365187 -0.252946182  0.0986198223  0.3131601150  0.258714488
## [11,]  0.034964262 -0.005237802 -0.0413573625  0.1067726765  0.080563348
## [12,]  0.042925070 -0.006288396 -0.0239639582  0.0098774019 -0.009231313
## [13,]  0.184133207  0.025853305  0.0350414931  0.1115966071  0.019584021
## [14,] -0.009501296  0.010617007 -0.0004217437  0.0227193570 -0.041312948
## [15,]  0.221463149 -0.070602047  0.4537461097 -0.2530351841 -0.045354777
## [16,]  0.395383151 -0.253202479  0.5667010294 -0.2697439328 -0.034054508
## [17,]  0.398037805 -0.192348606  0.4472699948 -0.2269909167  0.012754736
## [18,]  0.519491281 -0.366281061  0.5382177507 -0.1782904023  0.152516056
## [19,]  0.066824529  0.272724024  0.0325372584 -0.0689334163  0.152382470
## [20,]  0.220461453  0.154611014  0.1055889410  0.1806838333  0.013292027
## [21,]  0.117211877  0.058042660  0.0858815669 -0.0109314679  0.122327503
## [22,]  0.056215076  0.064131840 -0.0839290238 -0.0379660230  0.099008333
## [23,] -0.009612491 -0.082078008 -0.2440349833  0.0563745713  0.174826193
## [24,] -0.021926356  0.135391089 -0.1461889717  0.0185088128  0.013584641
## [25,]  0.089547392  0.175740024 -0.2046743609  0.1272895376  0.249962350
## [26,] -0.008443935  0.030473273 -0.1184611043  0.0755034023  0.175866631
## [27,]  0.048877766  0.161678983 -0.0139890968  0.0707455010  0.021631722
## [28,] -0.010304598  0.142179089 -0.2864310533 -0.0335586331  0.439404977
## [29,] -0.271818253  0.002818635 -0.4330422312 -0.0721834640  0.421013602
## [30,] -0.070790932  0.132437053 -0.3550946533  0.0007286761  0.486277807
## [31,] -0.075146161 -0.079692324 -0.3805930678  0.0109221851  0.455533902
## [32,]  0.252944815  0.465938292  0.2418628578  0.0205759387  0.148042838
## [33,]  0.275674957  0.467167008  0.2077334557  0.0353643400  0.221745051
## [34,]  0.350819685  0.600306400  0.1994888413  0.0085038532  0.039496848
## [35,]  0.140253220  0.349344199  0.1215037188 -0.0401398314  0.197886849
## [36,]  0.453456057  0.629869011  0.2551673663  0.0820154572  0.154255199
## [37,]  0.361190953  0.532909515  0.2451615010  0.0837478867  0.143371713
## [38,]  0.322298607  0.427862178  0.3046091377  0.1306485911  0.043324441
## [39,]  0.166201515 -0.383307264  0.2780025317  0.2437373931  0.324345916
## [40,]  0.628642657 -0.126507100  0.0438038934  0.4714694001  0.002688336
## [41,]  0.498183010 -0.309731607  0.2483578955  0.3160319730  0.291344174
## [42,] -0.071253235 -0.176187551  0.2820999069 -0.1981558593  0.358110641
## [43,] -0.175166091 -0.255036764  0.0899158865  0.0902565444  0.291191694
## [44,]  0.520435746 -0.276882518  0.0664971484  0.6279594838  0.006484134
## [45,]  0.353816609 -0.072323767 -0.1378132756  0.6398808035 -0.157673094
## [46,]  0.344456850  0.049834861 -0.1710034643  0.5408709534 -0.229628383
## [47,]  0.322591644  0.034223060 -0.2017012669  0.5376717046 -0.177687587
## [48,] -0.081135542 -0.221583820  0.0020756439 -0.0212611611  0.231358518
##               [,6]         [,7]         [,8]         [,9]         [,10]
##  [1,] -0.082001581  0.033987130 -0.042762197  0.120468153  0.0320952315
##  [2,] -0.057798710  0.012209956 -0.007816889  0.001212295  0.0393080399
##  [3,] -0.083718970  0.066710107  0.003791567 -0.120254338  0.0341369875
##  [4,] -0.069844251  0.034483928 -0.010169600  0.055154203  0.0071443546
##  [5,] -0.104475794  0.054784577 -0.033405242 -0.038603711  0.0371015223
##  [6,] -0.066566439  0.041299407 -0.003537965 -0.010431577  0.0087386065
##  [7,]  0.131986554 -0.039565684  0.023393188  0.107952725 -0.0252115578
##  [8,]  0.011548085  0.012393580  0.045862346 -0.002354365  0.0134669290
##  [9,] -0.182563998  0.091040506 -0.140947686 -0.141880470  0.0341012495
## [10,]  0.117398131  0.028154999  0.140403200 -0.320281540  0.0933128234
## [11,]  0.122566146  0.121285560  0.181786469  0.098707440  0.3643046624
## [12,] -0.032462683  0.068079379 -0.042493774  0.318080426  0.5164375447
## [13,]  0.017830686  0.022313901  0.137017635 -0.626355288  0.1513591906
## [14,] -0.035062488  0.022881396 -0.114035670  0.164611360 -0.4019058116
## [15,] -0.251567350  0.339425437 -0.007339500  0.083984336 -0.0450436599
## [16,] -0.295392955  0.210986007 -0.084345691  0.011543078  0.0204750611
## [17,] -0.357866604  0.180231804 -0.216680933 -0.002126935  0.0541346573
## [18,] -0.258705054  0.126557582 -0.100833775 -0.013473491  0.0166554810
## [19,]  0.447164237  0.215259181 -0.593907359 -0.059370275  0.0600675938
## [20,]  0.335026308  0.374396462 -0.009277442 -0.062329208  0.0693500440
## [21,]  0.246793624  0.218498476 -0.030288699  0.112146121  0.0957048878
## [22,]  0.003791967  0.163726226 -0.016492076  0.323330278  0.2661404382
## [23,]  0.120381940  0.330566231  0.247726778  0.198141733  0.0332787669
## [24,]  0.009237293  0.428433285  0.219374592  0.063500558 -0.2254287139
## [25,] -0.176330932  0.236498350 -0.048221861 -0.139220295 -0.1541606617
## [26,]  0.061505491  0.382231791  0.124352945  0.048437390 -0.1219178183
## [27,]  0.001323685  0.479556767  0.296759497 -0.090067607 -0.2208470573
## [28,] -0.335072632  0.005236990 -0.151368180 -0.088606347  0.0246630876
## [29,] -0.300619822 -0.002402494 -0.062972991  0.043755640  0.0712091270
## [30,] -0.369662866 -0.065854474 -0.115503801 -0.006284413  0.0594067887
## [31,] -0.161774216  0.083934734  0.009644929 -0.060328858  0.0250183323
## [32,] -0.022896450 -0.010083705  0.040144272  0.128123776 -0.0586688120
## [33,] -0.028838027 -0.220267110  0.184092705  0.124414449  0.0245051005
## [34,] -0.085110170 -0.121248935  0.143414422  0.126007909 -0.0481529476
## [35,]  0.345124721  0.091964973 -0.556390220 -0.121295262  0.0380130938
## [36,]  0.034655199 -0.136774105  0.111563002  0.042954919  0.0141622822
## [37,] -0.039264420 -0.174719445  0.123026977  0.060498330  0.0007646301
## [38,] -0.012668886 -0.045967882  0.112032011 -0.088107608 -0.0673950512
## [39,]  0.177097078 -0.078241615  0.134409086  0.104727490  0.0511292630
## [40,] -0.023019221  0.012245576  0.011594135  0.049487010 -0.0267034233
## [41,]  0.027007561 -0.120430087  0.065166307 -0.133423478  0.1041100896
## [42,]  0.056991467 -0.181473385 -0.126297535  0.049508290 -0.2768494771
## [43,]  0.235026574 -0.095923999 -0.039541358  0.179048273 -0.2034483789
## [44,] -0.006920718 -0.031431770 -0.036640503  0.060185285 -0.0191394333
## [45,] -0.139958328 -0.004511188 -0.190323287  0.106470642 -0.0603242878
## [46,] -0.203607340  0.037211307 -0.207074827  0.100800134 -0.0149253406
## [47,] -0.166106494  0.037354020 -0.243877021  0.096817037 -0.1170511571
## [48,]  0.227560565 -0.128495437 -0.012688928  0.097102987 -0.2398954028
##              [,11]         [,12]        [,13]
##  [1,] -0.033452773  4.433051e-02  0.029750965
##  [2,]  0.005008073  1.097665e-02  0.027098867
##  [3,] -0.006102608 -5.881030e-02 -0.033386090
##  [4,] -0.011226881  1.197461e-02  0.023978834
##  [5,] -0.020795180 -1.742452e-02  0.029858263
##  [6,] -0.025821619 -2.366975e-02 -0.021508759
##  [7,]  0.013910371  9.804168e-03  0.095283739
##  [8,]  0.010736741  4.438123e-03  0.022111500
##  [9,]  0.011207108 -8.872394e-02 -0.096339402
## [10,] -0.059824378 -5.123700e-02 -0.105608502
## [11,] -0.029922197 -3.404953e-01 -0.318524057
## [12,] -0.007788177  2.162743e-01 -0.510166186
## [13,] -0.233047143 -1.985640e-01 -0.065360319
## [14,] -0.177600721 -1.222067e-01 -0.415743492
## [15,]  0.054671665 -1.580389e-01  0.019856703
## [16,]  0.038154655 -1.015786e-02  0.018315372
## [17,]  0.006322166 -8.530183e-03  0.010775019
## [18,]  0.026492231 -5.996293e-02  0.009387962
## [19,]  0.083418625  2.891721e-02  0.016772520
## [20,]  0.086257127  2.490252e-01  0.060149328
## [21,] -0.326050055 -7.464966e-02  0.446516736
## [22,] -0.502228988 -1.025504e-01  0.146394756
## [23,]  0.178188177 -3.525719e-01  0.153396815
## [24,] -0.252453100  3.945625e-01 -0.159716488
## [25,] -0.342363471 -7.497839e-03 -0.157971189
## [26,]  0.483858181 -2.274047e-01 -0.156084422
## [27,]  0.047337585  1.139663e-01  0.068403060
## [28,] -0.045704261  2.692823e-02 -0.080016616
## [29,]  0.046396969  2.814546e-02  0.150556864
## [30,]  0.066045753  4.839927e-02  0.111016698
## [31,]  0.122597695  1.044628e-01 -0.002980044
## [32,] -0.065328753 -7.417154e-02  0.036373164
## [33,]  0.035160748 -5.176107e-02  0.042503172
## [34,]  0.051199796 -8.416935e-03  0.008033385
## [35,]  0.081065210 -4.073227e-02 -0.066826405
## [36,]  0.070937786  3.744019e-05 -0.013620424
## [37,]  0.064652089 -3.986012e-02  0.019907847
## [38,] -0.045053658  7.265130e-02 -0.067113282
## [39,]  0.051447058  2.220870e-01  0.013192224
## [40,] -0.102306513  7.614907e-02  0.025469614
## [41,]  0.024963151  5.510919e-02 -0.034438860
## [42,] -0.117934857  3.303808e-02 -0.092734549
## [43,]  0.037701668  1.373879e-01 -0.092197235
## [44,]  0.007368148  3.423013e-02  0.027129317
## [45,]  0.070014690 -5.339542e-02  0.088744512
## [46,]  0.052233327 -5.233922e-02  0.111993548
## [47,] -0.044845295 -1.180711e-01 -0.050480710
## [48,] -0.180794485 -4.537557e-01 -0.101321245
## 
## $communalities
##  [1] 0.5609375 0.8762632 0.7370456 0.7864450 0.7653372 0.7334560 0.5977167
##  [8] 0.7180057 0.6012187 0.5036372 0.4443812 0.6851212 0.5814695 0.4251275
## [15] 0.5419915 0.7568441 0.6578366 0.8467170 0.7221023 0.4507477 0.4821274
## [22] 0.5122090 0.5052152 0.5722474 0.4341998 0.5444146 0.4290341 0.4494562
## [29] 0.5708227 0.5620363 0.4280053 0.3951048 0.4928572 0.5883366 0.6632386
## [36] 0.7376068 0.5591547 0.4376172 0.5377174 0.6562953 0.6435257 0.4380366
## [43] 0.3649998 0.7546433 0.6701530 0.6097611 0.5966211 0.4939470
#f<-factanal(NF
 #           , factors = 13,
  #          scores = "Bartlett",rotation = "varimax")

#write.csv(f$loadings,"out_load.csv")

FinalNumeric<-data.frame("HAI4"=NF$HAI4,"HAI6"=NF$HAI6,"IPThroughput"=NF$ED_IP_Throughput,"PAYAMI"=NF$PAYM_30_AMI,"PSI14"=NF$PSI_14_POSTOP_DEHIS,"IMMPT"=NF$IMM__PT,"IMMWork"=NF$IMM_Workers,"PSI4"=NF$PSI_4_SURG_COMP,"HipKnee"=(NF$COMP_HIP_KNEE+NF$READM_30_HIP_KNEE)/2,"Payment"=(NF$PAYM_30_HF+NF$PAYM_30_PN+NF$PayPerBenAvg)/3,"EDTimes"=(NF$ED_OP_Throughput+NF$TimeToEval+NF$TimeToPainMed+NF$LeftBeforeTreat)/4,NF$READM_30_HOSP_WIDE,NF$RecoveryInfo,NF$Quiet,NF$HAI2,NF$HAI5,NF$SumStruct,NF$EDV,"HCAHPSStaff"=(NF$Cleanliness+NF$Nurses+NF$Doctors+NF$HelpWhenNeeded+NF$PainControl+NF$ExplainMeds+NF$UnderstandCare)/6)

Predictors<-data.frame(FinalNumeric,data.frame(Binary1[c(1,2,3,4,5,6,10,11,12,13,14,15,16)]))

Model Building: Recommend

##Weight by the model

library(caret)
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(pROC)
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:boot':
## 
##     logit
## The following object is masked from 'package:psych':
## 
##     logit
All<-data.frame("Recommend"=DClean$Recommend,"ScoreBin"=DClean$ScoreBin,"Score"=DClean$Score,Predictors)

Recmod<-lm(data=All,Recommend~.-PSI14-ScoreBin-Score-IMMWork-NF.HAI5-ElectiveEarlyDelivery-PAYAMI-TimeToECG-EDTimes-HAI6-NF.HAI2-PSI90-Aggregate_Inf  -IPThroughput -HospVTE-AppropStrokeCare)
#summary(mod1a)

wts1 <- 1/fitted(lm(abs(residuals(Recmod)) ~ fitted(Recmod)))^2

Recmodw<-lm(data=All,Recommend~.-PSI14-ScoreBin-Score-IMMWork-NF.HAI5-ElectiveEarlyDelivery-PAYAMI-TimeToECG-EDTimes-HAI6-NF.HAI2 -PSI90-Aggregate_Inf -IPThroughput-HospVTE-AppropStrokeCare,weights = wts1)
  summary(Recmodw)
## 
## Call:
## lm(formula = Recommend ~ . - PSI14 - ScoreBin - Score - IMMWork - 
##     NF.HAI5 - ElectiveEarlyDelivery - PAYAMI - TimeToECG - EDTimes - 
##     HAI6 - NF.HAI2 - PSI90 - Aggregate_Inf - IPThroughput - HospVTE - 
##     AppropStrokeCare, data = All, weights = wts1)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4966 -0.7942  0.0663  0.8798  4.6464 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              79.8883     1.0948  72.971  < 2e-16 ***
## HAI4                     -0.2584     0.1064  -2.430 0.015174 *  
## IMMPT                     0.4299     0.1099   3.912 9.36e-05 ***
## PSI4                     -0.3516     0.1012  -3.474 0.000521 ***
## HipKnee                  -0.4099     0.1213  -3.378 0.000740 ***
## Payment                   0.6367     0.1337   4.762 2.02e-06 ***
## NF.READM_30_HOSP_WIDE    -0.8192     0.1117  -7.332 2.95e-13 ***
## NF.RecoveryInfo           1.5523     0.1373  11.306  < 2e-16 ***
## NF.Quiet                  0.6221     0.1407   4.422 1.01e-05 ***
## NF.SumStruct              1.8239     0.1639  11.127  < 2e-16 ***
## NF.EDV                    1.5835     0.1258  12.591  < 2e-16 ***
## HCAHPSStaff               5.1425     0.1691  30.409  < 2e-16 ***
## OwnPhysician              4.0758     1.3771   2.960 0.003106 ** 
## OwnProprietary            1.1562     0.3631   3.185 0.001466 ** 
## OwnVoluntary Non-Profit   0.9650     0.2972   3.247 0.001181 ** 
## Emergency.Services       -1.4507     0.6537  -2.219 0.026550 *  
## OP_12.eLab_Rec           -1.8686     0.5394  -3.464 0.000540 ***
## OP_17_TrackMedInfo       -1.5702     0.4501  -3.488 0.000494 ***
## OP_25_CHECK_OP           -2.9570     0.6891  -4.291 1.84e-05 ***
## AspirinCP                -3.3568     0.2202 -15.247  < 2e-16 ***
## MeaningfulUse            -1.2418     0.5110  -2.430 0.015159 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.269 on 2838 degrees of freedom
## Multiple R-squared:  0.6227, Adjusted R-squared:   0.62 
## F-statistic: 234.2 on 20 and 2838 DF,  p-value: < 2.2e-16
vif(Recmodw)
##                           GVIF Df GVIF^(1/(2*Df))
## HAI4                  1.018895  1        1.009403
## IMMPT                 1.128876  1        1.062486
## PSI4                  1.035428  1        1.017560
## HipKnee               1.092609  1        1.045279
## Payment               1.344788  1        1.159650
## NF.READM_30_HOSP_WIDE 1.228767  1        1.108498
## NF.RecoveryInfo       1.746815  1        1.321671
## NF.Quiet              1.966968  1        1.402486
## NF.SumStruct          2.671536  1        1.634483
## NF.EDV                1.572384  1        1.253947
## HCAHPSStaff           2.716860  1        1.648290
## Own                   1.381398  3        1.055326
## Emergency.Services    1.027947  1        1.013877
## OP_12.eLab_Rec        2.195739  1        1.481803
## OP_17_TrackMedInfo    2.120606  1        1.456230
## OP_25_CHECK_OP        1.331616  1        1.153957
## AspirinCP             1.189877  1        1.090815
## MeaningfulUse         1.039363  1        1.019491
library(ppcor)
mod1<-pcor(data.frame(All$Recommend,All$HAI4,All$IMMPT,All$PSI4,All$HipKnee,All$Payment,All$NF.READM_30_HOSP_WIDE,All$NF.RecoveryInfo,All$NF.Quiet,All$NF.SumStruct,All$NF.EDV,All$HCAHPSStaff,as.numeric(All$Own=='Physician'),All$Emergency.Services,All$OP_12.eLab_Rec,All$OP_17_TrackMedInfo,All$OP_25_CHECK_OP,All$AspirinCP,All$MeaningfulUse))
est<-data.frame(mod1$estimate)
est[1]
##                                    All.Recommend
## All.Recommend                         1.00000000
## All.HAI4                             -0.04887691
## All.IMMPT                             0.07893775
## All.PSI4                             -0.06835207
## All.HipKnee                          -0.06107802
## All.Payment                           0.10517770
## All.NF.READM_30_HOSP_WIDE            -0.13421261
## All.NF.RecoveryInfo                   0.21459159
## All.NF.Quiet                          0.07807329
## All.NF.SumStruct                      0.20382147
## All.NF.EDV                            0.22694804
## All.HCAHPSStaff                       0.50138588
## as.numeric.All.Own.....Physician..    0.04215514
## All.Emergency.Services               -0.04155511
## All.OP_12.eLab_Rec                   -0.06728329
## All.OP_17_TrackMedInfo               -0.06489254
## All.OP_25_CHECK_OP                   -0.07519691
## All.AspirinCP                        -0.27595251
## All.MeaningfulUse                    -0.04650161
##Compare with true values.

hist(Recmodw$residuals)

Binary Logistic

### Now Build 5 or not binary logistic
gmod2a<-glm(data=All,ScoreBin~.-Recommend-Score-PAYAMI-PSI14-IMMWork-TimeToECG-HAI6-EDTimes-OP_17_TrackMedInfo-ElectiveEarlyDelivery-OP_25_CHECK_OP-NF.RecoveryInfo-NF.EDV -AppropStrokeCare-OP_12.eLab_Rec-Emergency.Services -MeaningfulUse-HAI4-IMMPT-HospVTE-Aggregate_Inf-NF.HAI2-Payment-IPThroughput)
summary(gmod2a)
## 
## Call:
## glm(formula = ScoreBin ~ . - Recommend - Score - PAYAMI - PSI14 - 
##     IMMWork - TimeToECG - HAI6 - EDTimes - OP_17_TrackMedInfo - 
##     ElectiveEarlyDelivery - OP_25_CHECK_OP - NF.RecoveryInfo - 
##     NF.EDV - AppropStrokeCare - OP_12.eLab_Rec - Emergency.Services - 
##     MeaningfulUse - HAI4 - IMMPT - HospVTE - Aggregate_Inf - 
##     NF.HAI2 - Payment - IPThroughput, data = All)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.27736  -0.05979  -0.02259   0.01682   0.93446  
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.010976   0.008174   1.343 0.179448    
## PSI4                    -0.007261   0.002847  -2.550 0.010820 *  
## HipKnee                 -0.008292   0.003414  -2.429 0.015214 *  
## NF.READM_30_HOSP_WIDE   -0.033375   0.003024 -11.038  < 2e-16 ***
## NF.Quiet                 0.007752   0.003766   2.059 0.039630 *  
## NF.HAI5                  0.013085   0.002851   4.590 4.62e-06 ***
## NF.SumStruct             0.015388   0.003007   5.117 3.31e-07 ***
## HCAHPSStaff              0.018622   0.003887   4.791 1.74e-06 ***
## OwnPhysician             0.192420   0.039751   4.841 1.36e-06 ***
## OwnProprietary           0.013652   0.009702   1.407 0.159514    
## OwnVoluntary Non-Profit  0.010166   0.008106   1.254 0.209875    
## AspirinCP               -0.020671   0.005845  -3.537 0.000412 ***
## PSI90                   -0.129973   0.015155  -8.576  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.02256087)
## 
##     Null deviance: 74.926  on 2858  degrees of freedom
## Residual deviance: 64.208  on 2846  degrees of freedom
## AIC: -2711.5
## 
## Number of Fisher Scoring iterations: 2
roc(All$ScoreBin,gmod2a$fitted.values,plot=TRUE)

## 
## Call:
## roc.default(response = All$ScoreBin, predictor = gmod2a$fitted.values,     plot = TRUE)
## 
## Data: gmod2a$fitted.values in 2782 controls (All$ScoreBin 0) < 77 cases (All$ScoreBin 1).
## Area under the curve: 0.9777
vif(gmod2a)
##                           GVIF Df GVIF^(1/(2*Df))
## PSI4                  1.027001  1        1.013411
## HipKnee               1.084154  1        1.041227
## NF.READM_30_HOSP_WIDE 1.158238  1        1.076215
## NF.Quiet              1.796300  1        1.340261
## NF.HAI5               1.029360  1        1.014574
## NF.SumStruct          1.145765  1        1.070404
## HCAHPSStaff           1.851994  1        1.360880
## Own                   1.228389  3        1.034878
## AspirinCP             1.068003  1        1.033442
## PSI90                 1.046802  1        1.023133
sen1<-sensitivity(as.factor(round(gmod2a$fitted.values)),as.factor(All$ScoreBin))
sen1
## [1] 1
specificity(as.factor(round(gmod2a$fitted.values)),as.factor(All$ScoreBin))
## [1] 0.01298701
ppv1<-posPredValue(as.factor(round(gmod2a$fitted.values)),as.factor(All$ScoreBin))
ppv1
## [1] 0.973408
negPredValue(as.factor(round(gmod2a$fitted.values)),as.factor(All$ScoreBin))
## [1] 1
f11<-(2*sen1*ppv1)/(sen1+ppv1)
f11
## [1] 0.9865248
confusionMatrix(All$ScoreBin,round(gmod2a$fitted.values))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 2782    0
##          1   76    1
##                                          
##                Accuracy : 0.9734         
##                  95% CI : (0.9668, 0.979)
##     No Information Rate : 0.9997         
##     P-Value [Acc > NIR] : 1              
##                                          
##                   Kappa : 0.025          
##  Mcnemar's Test P-Value : <2e-16         
##                                          
##             Sensitivity : 0.97341        
##             Specificity : 1.00000        
##          Pos Pred Value : 1.00000        
##          Neg Pred Value : 0.01299        
##              Prevalence : 0.99965        
##          Detection Rate : 0.97307        
##    Detection Prevalence : 0.97307        
##       Balanced Accuracy : 0.98670        
##                                          
##        'Positive' Class : 0              
## 

MultiNomial Model for Hospital Score

require(VGAM)
## Loading required package: VGAM
## Loading required package: stats4
## Loading required package: splines
## 
## Attaching package: 'VGAM'
## The following object is masked from 'package:car':
## 
##     logit
## The following object is masked from 'package:caret':
## 
##     predictors
## The following objects are masked from 'package:boot':
## 
##     logit, simplex
## The following objects are masked from 'package:psych':
## 
##     fisherz, logistic, logit
multimod<-vglm(data=All,Score~.-ScoreBin-Recommend-MeaningfulUse-HAI6-ElectiveEarlyDelivery-NF.EDV-OP_25_CHECK_OP-Aggregate_Inf-Emergency.Services-AppropStrokeCare-HospVTE-NF.HAI5-IMMWork-PAYAMI-HAI4-Payment,family=multinomial(refLevel=1))
## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 10 diagonal elements of the working weights variable 'wz' have
## been replaced by 1.819e-12
## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 85 diagonal elements of the working weights variable 'wz' have
## been replaced by 1.819e-12
## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 163 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12
## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 230 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12
## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 266 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12
## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 276 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12

## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 276 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12

## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 276 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12

## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 276 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12

## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 276 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12

## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 276 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12

## Warning in checkwz(wz, M = M, trace = trace, wzepsilon = control
## $wzepsilon): 276 diagonal elements of the working weights variable 'wz'
## have been replaced by 1.819e-12
summary(multimod)
## 
## Call:
## vglm(formula = Score ~ . - ScoreBin - Recommend - MeaningfulUse - 
##     HAI6 - ElectiveEarlyDelivery - NF.EDV - OP_25_CHECK_OP - 
##     Aggregate_Inf - Emergency.Services - AppropStrokeCare - HospVTE - 
##     NF.HAI5 - IMMWork - PAYAMI - HAI4 - Payment, family = multinomial(refLevel = 1), 
##     data = All)
## 
## 
## Pearson residuals:
##                        Min      1Q     Median         3Q    Max
## log(mu[,2]/mu[,1]) -12.215 -0.1624 -0.0355960 -3.284e-04  15.97
## log(mu[,3]/mu[,1]) -10.717 -0.3499 -0.0046272  4.100e-01  11.51
## log(mu[,4]/mu[,1])  -7.004 -0.2237 -0.0424332 -3.433e-10 196.54
## log(mu[,5]/mu[,1])  -5.282 -0.0169 -0.0006646 -2.702e-07  14.41
## 
## Coefficients: 
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1               9.07413    1.32563   6.845 7.64e-12 ***
## (Intercept):2              11.33990    1.38333   8.198 2.45e-16 ***
## (Intercept):3               8.16291    1.43108   5.704 1.17e-08 ***
## (Intercept):4              -1.79332    2.01241  -0.891 0.372861    
## IPThroughput:1             -0.28157    0.14966  -1.881 0.059914 .  
## IPThroughput:2             -0.46283    0.17917  -2.583 0.009788 ** 
## IPThroughput:3             -0.44888    0.20833  -2.155 0.031189 *  
## IPThroughput:4             -0.01047    0.37999  -0.028 0.978029    
## PSI14:1                    -0.03672    0.14559  -0.252 0.800873    
## PSI14:2                    -0.23370    0.16143  -1.448 0.147717    
## PSI14:3                    -0.35355    0.17537  -2.016 0.043798 *  
## PSI14:4                    -0.15359    0.25294  -0.607 0.543707    
## IMMPT:1                     0.30445    0.14759   2.063 0.039125 *  
## IMMPT:2                     0.29326    0.16788   1.747 0.080667 .  
## IMMPT:3                     0.57036    0.18571   3.071 0.002131 ** 
## IMMPT:4                     0.99312    0.43407   2.288 0.022142 *  
## PSI4:1                     -0.42437    0.16425  -2.584 0.009773 ** 
## PSI4:2                     -0.84533    0.18156  -4.656 3.23e-06 ***
## PSI4:3                     -1.30501    0.19479  -6.699 2.09e-11 ***
## PSI4:4                     -1.78075    0.25529  -6.975 3.05e-12 ***
## HipKnee:1                   0.49131    0.26578   1.849 0.064519 .  
## HipKnee:2                   0.55930    0.27941   2.002 0.045318 *  
## HipKnee:3                   0.55221    0.29016   1.903 0.057027 .  
## HipKnee:4                   0.67054    0.34398   1.949 0.051250 .  
## EDTimes:1                  -0.14107    0.21629  -0.652 0.514251    
## EDTimes:2                  -0.32545    0.24521  -1.327 0.184447    
## EDTimes:3                  -0.53863    0.27188  -1.981 0.047577 *  
## EDTimes:4                  -0.52713    0.42708  -1.234 0.217099    
## NF.READM_30_HOSP_WIDE:1    -2.01402    0.23934  -8.415  < 2e-16 ***
## NF.READM_30_HOSP_WIDE:2    -4.20376    0.27088 -15.519  < 2e-16 ***
## NF.READM_30_HOSP_WIDE:3    -6.22503    0.29504 -21.099  < 2e-16 ***
## NF.READM_30_HOSP_WIDE:4    -8.98751    0.45143 -19.909  < 2e-16 ***
## NF.RecoveryInfo:1           0.12094    0.24704   0.490 0.624433    
## NF.RecoveryInfo:2           0.12248    0.26437   0.463 0.643150    
## NF.RecoveryInfo:3           0.58661    0.27989   2.096 0.036097 *  
## NF.RecoveryInfo:4           0.83322    0.40660   2.049 0.040439 *  
## NF.Quiet:1                  0.28936    0.27362   1.058 0.290269    
## NF.Quiet:2                  0.34946    0.29017   1.204 0.228460    
## NF.Quiet:3                  0.34158    0.30353   1.125 0.260432    
## NF.Quiet:4                  0.90689    0.40297   2.251 0.024416 *  
## NF.HAI2:1                  -0.49815    0.24275  -2.052 0.040154 *  
## NF.HAI2:2                  -0.62386    0.25659  -2.431 0.015043 *  
## NF.HAI2:3                  -0.51823    0.26490  -1.956 0.050429 .  
## NF.HAI2:4                  -0.55834    0.33775  -1.653 0.098307 .  
## NF.SumStruct:1              0.52156    0.28354   1.839 0.065854 .  
## NF.SumStruct:2              1.02371    0.30532   3.353 0.000800 ***
## NF.SumStruct:3              1.36594    0.32000   4.269 1.97e-05 ***
## NF.SumStruct:4              2.45177    0.44561   5.502 3.76e-08 ***
## HCAHPSStaff:1               1.48642    0.39171   3.795 0.000148 ***
## HCAHPSStaff:2               3.59313    0.42414   8.472  < 2e-16 ***
## HCAHPSStaff:3               5.13392    0.44124  11.635  < 2e-16 ***
## HCAHPSStaff:4               6.82137    0.55601  12.268  < 2e-16 ***
## OwnPhysician:1              7.55050  476.98564   0.016 0.987370    
## OwnPhysician:2              7.81915  476.98629   0.016 0.986921    
## OwnPhysician:3              9.56794  476.98731   0.020 0.983996    
## OwnPhysician:4             10.94579  476.99128   0.023 0.981692    
## OwnProprietary:1           -1.13209    0.64794  -1.747 0.080600 .  
## OwnProprietary:2           -0.52890    0.69246  -0.764 0.444990    
## OwnProprietary:3           -0.01929    0.73305  -0.026 0.979003    
## OwnProprietary:4            1.15033    1.13962   1.009 0.312786    
## OwnVoluntary Non-Profit:1   0.25687    0.52156   0.492 0.622371    
## OwnVoluntary Non-Profit:2   0.91997    0.56298   1.634 0.102236    
## OwnVoluntary Non-Profit:3   1.49156    0.59539   2.505 0.012238 *  
## OwnVoluntary Non-Profit:4   3.15736    0.88922   3.551 0.000384 ***
## OP_12.eLab_Rec:1            0.82646    1.13672   0.727 0.467193    
## OP_12.eLab_Rec:2           -0.43892    1.19199  -0.368 0.712708    
## OP_12.eLab_Rec:3           -1.42571    1.23824  -1.151 0.249567    
## OP_12.eLab_Rec:4           -3.49605    1.74299  -2.006 0.044879 *  
## OP_17_TrackMedInfo:1       -2.15432    1.00419  -2.145 0.031926 *  
## OP_17_TrackMedInfo:2       -2.43134    1.04971  -2.316 0.020547 *  
## OP_17_TrackMedInfo:3       -2.48228    1.08673  -2.284 0.022361 *  
## OP_17_TrackMedInfo:4       -1.92089    1.53375  -1.252 0.210418    
## AspirinCP:1                -2.66722    1.25222  -2.130 0.033172 *  
## AspirinCP:2                -3.25378    1.38779  -2.345 0.019049 *  
## AspirinCP:3                -3.31811    1.53743  -2.158 0.030910 *  
## AspirinCP:4                -2.89310    1.96657  -1.471 0.141253    
## TimeToECG:1                 1.71177    1.21288   1.411 0.158150    
## TimeToECG:2                 2.15477    1.35306   1.593 0.111268    
## TimeToECG:3                 2.01262    1.50616   1.336 0.181465    
## TimeToECG:4                 0.50943    1.95285   0.261 0.794196    
## PSI90:1                   -11.36413    1.29826  -8.753  < 2e-16 ***
## PSI90:2                   -21.93507    1.44874 -15.141  < 2e-16 ***
## PSI90:3                   -30.91783    1.54319 -20.035  < 2e-16 ***
## PSI90:4                   -41.75321    2.12841 -19.617  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Number of linear predictors:  4 
## 
## Names of linear predictors: 
## log(mu[,2]/mu[,1]), log(mu[,3]/mu[,1]), log(mu[,4]/mu[,1]), log(mu[,5]/mu[,1])
## 
## Residual deviance: 3198.767 on 11352 degrees of freedom
## 
## Log-likelihood: -1599.383 on 11352 degrees of freedom
## 
## Number of iterations: 15 
## 
## Reference group is level  1  of the response
  class<-predict(multimod, type="response")
  
  categHat <- levels(as.factor(All$Score))[max.col(class)]
head(categHat)
## [1] "4" "4" "4" "5" "4" "5"
facHat <- factor(categHat, levels=levels(as.factor(All$Score)))
logLik(multimod)
## [1] -1599.383
  AIC(multimod)
## [1] 3366.767
  ### Compare to zero model
  vglm0 <- vglm(Score ~ 1, family=multinomial(refLevel=1), data=All)
  
  LLf   <- logLik(multimod)
LL0   <- logLik(vglm0)

##McFadden 
McF<-as.vector(1 - (LLf / LL0))

#Cox & Snell

CS<-as.vector(1 - exp((2/nrow(All)) * (LL0 - LLf)))

#Nagelkerke

Nagel<-as.vector((1 - exp((2/nrow(All)) * (LL0 - LLf))) / (1 - exp(LL0)^(2/nrow(All))))

McF
## [1] 0.5530888
CS
## [1] 0.7495903
Nagel
## [1] 0.7495903