SSQOL分析

library(psych);library(ggplot2);library(reshape2);library(Hmisc)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
## 
##     describe
## The following objects are masked from 'package:base':
## 
##     format.pval, round.POSIXt, trunc.POSIXt, units
#creating correlation matrix
SSQOL <- read.table("SSQOL.txt", header=T)
S <- matrix(unlist(SSQOL), ncol = 49)
SR <- cor(S)
write.table(SR, file = "SR.txt", sep = " ", row.names = FALSE, col.names = T)

# MSA(2) and bartlett test
KMO(SR) # Overall MSA =  0.91
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = SR)
## Overall MSA =  0.91
## MSA for each item = 
##  [1] 0.95 0.93 0.94 0.95 0.96 0.89 0.79 0.79 0.86 0.86 0.89 0.91 0.83 0.95
## [15] 0.94 0.94 0.96 0.92 0.93 0.93 0.92 0.93 0.92 0.94 0.91 0.93 0.95 0.93
## [29] 0.82 0.79 0.86 0.80 0.91 0.90 0.89 0.93 0.90 0.89 0.93 0.88 0.94 0.93
## [43] 0.90 0.92 0.92 0.88 0.87 0.89 0.91
cortest.bartlett(SR, n = 263) # chisq=9104.343 p.value = 0  df=1176
## $chisq
## [1] 9104.343
## 
## $p.value
## [1] 0
## 
## $df
## [1] 1176
# numbers of factor
eigen(SR)$values[eigen(SR)$values >1] # 10
##  [1] 15.771425  4.598951  3.475467  2.012855  1.624200  1.553807  1.382814
##  [8]  1.290160  1.151761  1.008695
PA50 <- fa.parallel(SR,263, fa ="pc",quant=.5) #4

## Parallel analysis suggests that the number of factors =  NA  and the number of components =  4
PA99 <- fa.parallel(SR,263, fa ="pc",quant=.99) #4

## Parallel analysis suggests that the number of factors =  NA  and the number of components =  4
# fa analysis : rotate :Promax
#建議的4個因素 
pam4 <- fa(SR,nfactors = 4,n.obs = 263, rotate = "Promax",fm  =  "pa")
print(pam4)
## Factor Analysis using method =  pa
## Call: fa(r = SR, nfactors = 4, n.obs = 263, rotate = "Promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##      PA1   PA3   PA4   PA2   h2   u2 com
## 1   0.58  0.07  0.32 -0.17 0.58 0.42 1.8
## 2   0.23  0.31  0.05  0.11 0.31 0.69 2.2
## 3   0.71 -0.01  0.19 -0.09 0.62 0.38 1.2
## 4   0.83 -0.16  0.19 -0.01 0.77 0.23 1.2
## 5   0.86 -0.03 -0.07  0.04 0.68 0.32 1.0
## 6   0.23  0.44 -0.07 -0.08 0.27 0.73 1.6
## 7   0.07  0.65 -0.09  0.01 0.42 0.58 1.1
## 8   0.09  0.60 -0.06  0.00 0.37 0.63 1.1
## 9  -0.11  0.76  0.10 -0.06 0.55 0.45 1.1
## 10 -0.08  0.81  0.08 -0.07 0.63 0.37 1.1
## 11 -0.04  0.84 -0.09 -0.03 0.61 0.39 1.0
## 12 -0.17  0.80 -0.03  0.00 0.53 0.47 1.1
## 13 -0.14  0.75 -0.06  0.01 0.47 0.53 1.1
## 14  0.81 -0.05 -0.05  0.11 0.65 0.35 1.0
## 15  0.77  0.03 -0.02  0.07 0.64 0.36 1.0
## 16  0.82 -0.11 -0.07  0.14 0.63 0.37 1.1
## 17  0.87 -0.08 -0.23  0.25 0.68 0.32 1.3
## 18  0.88  0.04 -0.29  0.19 0.69 0.31 1.3
## 19  0.92 -0.01 -0.31  0.19 0.72 0.28 1.3
## 20  0.87 -0.13  0.16 -0.07 0.79 0.21 1.1
## 21  0.73 -0.06  0.10 -0.02 0.57 0.43 1.1
## 22  0.51 -0.04  0.24 -0.01 0.42 0.58 1.5
## 23  0.30  0.39  0.05 -0.08 0.34 0.66 2.0
## 24  0.73  0.05  0.16 -0.15 0.64 0.36 1.2
## 25  0.59  0.13  0.18 -0.13 0.52 0.48 1.4
## 26  0.62  0.14  0.22 -0.21 0.58 0.42 1.6
## 27  0.61  0.09  0.16 -0.05 0.55 0.45 1.2
## 28  0.02  0.11  0.14  0.47 0.39 0.61 1.3
## 29 -0.05  0.25 -0.01  0.47 0.35 0.65 1.6
## 30 -0.05  0.18 -0.02  0.45 0.27 0.73 1.3
## 31  0.03  0.07  0.28  0.23 0.25 0.75 2.1
## 32  0.01  0.00  0.20  0.29 0.19 0.81 1.8
## 33 -0.02 -0.08  0.41  0.22 0.27 0.73 1.7
## 34 -0.11  0.01  0.36  0.31 0.30 0.70 2.2
## 35  0.00  0.01  0.54  0.07 0.35 0.65 1.0
## 36  0.01  0.02  0.68  0.01 0.49 0.51 1.0
## 37  0.16 -0.16  0.65  0.04 0.50 0.50 1.2
## 38 -0.02 -0.05  0.68  0.08 0.49 0.51 1.0
## 39 -0.01  0.01  0.68  0.00 0.46 0.54 1.0
## 40 -0.08  0.05  0.64 -0.12 0.32 0.68 1.1
## 41 -0.09  0.04  0.72  0.07 0.54 0.46 1.1
## 42 -0.04 -0.02  0.25  0.52 0.44 0.56 1.4
## 43 -0.07 -0.03  0.37  0.34 0.34 0.66 2.1
## 44 -0.11  0.15  0.29  0.40 0.42 0.58 2.3
## 45  0.08  0.05  0.22  0.45 0.45 0.55 1.5
## 46  0.04  0.03 -0.06  0.49 0.23 0.77 1.0
## 47  0.05 -0.09 -0.10  0.80 0.53 0.47 1.1
## 48  0.15 -0.12 -0.05  0.70 0.48 0.52 1.2
## 49  0.10 -0.10  0.00  0.77 0.59 0.41 1.1
## 
##                         PA1  PA3  PA4  PA2
## SS loadings           10.26 4.50 4.85 4.30
## Proportion Var         0.21 0.09 0.10 0.09
## Cumulative Var         0.21 0.30 0.40 0.49
## Proportion Explained   0.43 0.19 0.20 0.18
## Cumulative Proportion  0.43 0.62 0.82 1.00
## 
##  With factor correlations of 
##      PA1  PA3  PA4  PA2
## PA1 1.00 0.45 0.55 0.35
## PA3 0.45 1.00 0.46 0.40
## PA4 0.55 0.46 1.00 0.58
## PA2 0.35 0.40 0.58 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## The degrees of freedom for the null model are  1176  and the objective function was  37.19 with Chi Square of  9104.34
## The degrees of freedom for the model are 986  and the objective function was  11.38 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  263 with the empirical chi square  1654.85  with prob <  1.1e-36 
## The total number of observations was  263  with Likelihood Chi Square =  2755.71  with prob <  5.8e-167 
## 
## Tucker Lewis Index of factoring reliability =  0.73
## RMSEA index =  0.083  and the 90 % confidence intervals are  0.078 0.084
## BIC =  -2738.43
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy             
##                                                 PA1  PA3  PA4  PA2
## Correlation of scores with factors             0.98 0.95 0.95 0.94
## Multiple R square of scores with factors       0.97 0.91 0.91 0.89
## Minimum correlation of possible factor scores  0.94 0.82 0.81 0.78
#理論建議的12個因素
pam12 <- fa(SR,nfactors = 12,n.obs = 152, rotate = "Promax",fm  =  "pa")
## In factor.stats, I could not find the RMSEA upper bound . Sorry about that
print(pam12)
## Factor Analysis using method =  pa
## Call: fa(r = SR, nfactors = 12, n.obs = 152, rotate = "Promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##      PA1   PA3  PA12   PA7   PA2  PA10   PA5   PA6   PA4   PA8   PA9  PA11
## 1   0.40  0.03  0.32  0.09 -0.07 -0.09 -0.02 -0.04  0.06  0.14  0.02 -0.01
## 2   0.18  0.15  0.11  0.01  0.06  0.00  0.19  0.02  0.16 -0.02 -0.18  0.11
## 3   0.49  0.03  0.01  0.29 -0.07  0.00 -0.04 -0.14 -0.01  0.05  0.05  0.23
## 4   0.66 -0.12  0.05  0.16 -0.05  0.02 -0.01 -0.13  0.07  0.02  0.04  0.19
## 5   0.78 -0.02 -0.06  0.09 -0.03 -0.02  0.02 -0.01 -0.03 -0.02  0.04  0.12
## 6   0.09  0.01  0.08  0.01 -0.16  0.00  0.03  0.49 -0.02  0.00 -0.03  0.15
## 7  -0.06  0.02  0.09  0.12  0.03  0.01  0.00  0.94 -0.06 -0.02 -0.04 -0.03
## 8  -0.03 -0.01  0.07  0.02 -0.11  0.03  0.04  0.85  0.02  0.07 -0.02 -0.03
## 9  -0.06  0.72 -0.04  0.08  0.01  0.04 -0.06  0.11  0.08 -0.03  0.06 -0.10
## 10 -0.01  0.84 -0.05  0.10  0.10  0.00 -0.11  0.03  0.06 -0.01  0.01 -0.08
## 11  0.07  0.99 -0.05 -0.02 -0.01  0.04 -0.08 -0.01 -0.14 -0.03  0.10 -0.06
## 12 -0.08  0.77 -0.03 -0.05  0.01 -0.05  0.14 -0.05  0.03  0.00 -0.07  0.07
## 13 -0.06  0.77 -0.02 -0.09 -0.02 -0.04  0.10 -0.07 -0.07  0.02  0.00  0.09
## 14  0.95 -0.02 -0.11 -0.16  0.02 -0.06 -0.01  0.01  0.18 -0.02  0.02  0.01
## 15  0.85  0.00  0.17 -0.24  0.05 -0.09 -0.05  0.09  0.01  0.05  0.02  0.03
## 16  0.92 -0.01 -0.13 -0.04  0.08  0.00 -0.10  0.03 -0.03 -0.10  0.17  0.06
## 17  0.89 -0.01 -0.19 -0.03 -0.04  0.14  0.00  0.03 -0.10 -0.05  0.12  0.10
## 18  0.97  0.06 -0.02 -0.02  0.18 -0.05  0.02  0.04 -0.04  0.00 -0.16 -0.17
## 19  0.98  0.08  0.00 -0.08  0.03  0.07  0.00 -0.04  0.01  0.03 -0.18 -0.19
## 20  0.68 -0.04  0.42  0.13 -0.01 -0.03  0.00 -0.07 -0.14  0.07  0.06 -0.23
## 21  0.51  0.02  0.29  0.19 -0.19  0.11  0.16 -0.05 -0.06  0.00  0.11 -0.37
## 22  0.30 -0.04  0.45  0.14 -0.02  0.17  0.02 -0.04  0.23 -0.09 -0.13 -0.31
## 23  0.16  0.19  0.14  0.03 -0.15  0.08 -0.02  0.20  0.08  0.03 -0.07  0.04
## 24  0.50 -0.02 -0.16  0.46 -0.04 -0.07 -0.03  0.02  0.02  0.09  0.05  0.10
## 25  0.24  0.00 -0.15  0.87  0.16  0.00 -0.03  0.07  0.01 -0.06 -0.06 -0.01
## 26  0.27  0.02 -0.17  0.90  0.15 -0.08 -0.06  0.07  0.02 -0.06 -0.02 -0.02
## 27  0.39  0.01  0.17  0.31  0.03 -0.05  0.06  0.05 -0.13 -0.03  0.09  0.08
## 28  0.06  0.02 -0.04  0.03  0.19  0.02  0.45  0.04 -0.07  0.12  0.19  0.01
## 29 -0.06 -0.04 -0.10 -0.03  0.01 -0.02  0.91  0.05  0.01  0.03  0.02  0.12
## 30 -0.01 -0.02 -0.02 -0.09  0.03 -0.05  0.90 -0.02  0.01 -0.06  0.06  0.01
## 31  0.01 -0.04 -0.07 -0.07  0.09  0.01 -0.07  0.08  0.06  0.85 -0.05  0.00
## 32  0.02  0.00 -0.13 -0.08  0.04  0.04  0.04 -0.02 -0.04  0.93  0.00 -0.15
## 33 -0.10 -0.03  0.37 -0.02  0.26  0.14 -0.11 -0.04 -0.01  0.09  0.06  0.12
## 34 -0.05 -0.08 -0.01  0.18  0.39 -0.02  0.12  0.13  0.14  0.08  0.13 -0.12
## 35 -0.04 -0.10  0.93 -0.25  0.36 -0.12 -0.03  0.12 -0.05 -0.11  0.13  0.01
## 36 -0.01  0.06  0.68 -0.17  0.24 -0.03 -0.16  0.05  0.03 -0.05  0.30  0.00
## 37  0.13  0.01  0.18 -0.03 -0.08  0.01  0.06 -0.03  0.02 -0.02  0.71 -0.03
## 38  0.02  0.13  0.08 -0.01  0.00  0.03  0.08 -0.06  0.18 -0.02  0.61 -0.10
## 39  0.03 -0.03  0.00 -0.04  0.03 -0.03  0.00 -0.11  0.72  0.13  0.02  0.04
## 40 -0.06 -0.08 -0.05  0.07 -0.03 -0.03  0.00  0.04  0.85 -0.08  0.04 -0.11
## 41 -0.05  0.03  0.03 -0.03  0.04  0.05  0.02 -0.01  0.49  0.01  0.30  0.07
## 42  0.03  0.08  0.13  0.16  0.69  0.04 -0.01 -0.12 -0.17  0.16 -0.01  0.10
## 43 -0.01 -0.02  0.02  0.22  0.54  0.07 -0.11  0.07  0.10  0.00  0.10 -0.01
## 44 -0.02  0.09  0.12 -0.01  0.54  0.02  0.01 -0.05  0.15  0.00 -0.12  0.32
## 45  0.12 -0.01  0.32  0.10  0.71 -0.04  0.10 -0.04 -0.03 -0.06 -0.18  0.17
## 46 -0.01 -0.08 -0.02  0.00  0.23  0.26  0.16 -0.01 -0.07 -0.15 -0.08  0.51
## 47 -0.03  0.03 -0.07 -0.06  0.09  0.86 -0.08  0.04 -0.05  0.07 -0.01  0.06
## 48  0.00 -0.01 -0.15  0.04 -0.02  0.85 -0.03 -0.03  0.02 -0.05  0.03  0.21
## 49  0.00 -0.03  0.08 -0.12  0.03  0.78  0.05  0.05  0.01  0.04  0.03  0.01
##      h2    u2 com
## 1  0.63 0.375 2.6
## 2  0.37 0.634 6.5
## 3  0.72 0.284 2.5
## 4  0.81 0.192 1.5
## 5  0.70 0.304 1.1
## 6  0.41 0.589 1.6
## 7  0.91 0.088 1.1
## 8  0.77 0.231 1.1
## 9  0.59 0.414 1.2
## 10 0.72 0.283 1.1
## 11 0.78 0.220 1.1
## 12 0.61 0.391 1.2
## 13 0.55 0.446 1.1
## 14 0.78 0.222 1.2
## 15 0.73 0.269 1.3
## 16 0.76 0.237 1.2
## 17 0.74 0.263 1.2
## 18 0.80 0.201 1.2
## 19 0.80 0.200 1.2
## 20 0.86 0.141 2.2
## 21 0.74 0.256 3.9
## 22 0.61 0.389 4.3
## 23 0.38 0.620 6.0
## 24 0.70 0.297 2.4
## 25 0.74 0.264 1.3
## 26 0.80 0.200 1.4
## 27 0.59 0.406 3.0
## 28 0.49 0.506 2.1
## 29 0.80 0.205 1.1
## 30 0.71 0.287 1.1
## 31 0.64 0.365 1.1
## 32 0.66 0.337 1.1
## 33 0.31 0.690 3.1
## 34 0.38 0.615 3.1
## 35 0.54 0.456 1.7
## 36 0.58 0.418 2.0
## 37 0.68 0.321 1.3
## 38 0.63 0.374 1.4
## 39 0.60 0.401 1.1
## 40 0.55 0.448 1.1
## 41 0.59 0.413 1.8
## 42 0.58 0.415 1.6
## 43 0.46 0.541 1.7
## 44 0.53 0.466 2.1
## 45 0.61 0.386 1.9
## 46 0.36 0.639 2.6
## 47 0.74 0.261 1.1
## 48 0.71 0.289 1.2
## 49 0.74 0.263 1.1
## 
##                        PA1  PA3 PA12  PA7  PA2 PA10  PA5  PA6  PA4  PA8
## SS loadings           8.73 3.39 2.19 2.48 2.30 2.34 2.02 2.11 1.86 1.56
## Proportion Var        0.18 0.07 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.03
## Cumulative Var        0.18 0.25 0.29 0.34 0.39 0.44 0.48 0.52 0.56 0.59
## Proportion Explained  0.28 0.11 0.07 0.08 0.07 0.07 0.06 0.07 0.06 0.05
## Cumulative Proportion 0.28 0.38 0.45 0.53 0.61 0.68 0.74 0.81 0.87 0.92
##                        PA9 PA11
## SS loadings           1.69 0.82
## Proportion Var        0.03 0.02
## Cumulative Var        0.63 0.64
## Proportion Explained  0.05 0.03
## Cumulative Proportion 0.97 1.00
## 
##  With factor correlations of 
##       PA1  PA3  PA12   PA7   PA2 PA10  PA5  PA6  PA4  PA8  PA9 PA11
## PA1  1.00 0.34  0.58  0.57  0.07 0.37 0.32 0.29 0.45 0.39 0.32 0.41
## PA3  0.34 1.00  0.43  0.36  0.12 0.21 0.39 0.48 0.43 0.34 0.12 0.43
## PA12 0.58 0.43  1.00  0.75 -0.06 0.38 0.43 0.22 0.61 0.53 0.35 0.55
## PA7  0.57 0.36  0.75  1.00 -0.19 0.27 0.31 0.17 0.43 0.50 0.25 0.48
## PA2  0.07 0.12 -0.06 -0.19  1.00 0.43 0.26 0.14 0.32 0.18 0.42 0.01
## PA10 0.37 0.21  0.38  0.27  0.43 1.00 0.41 0.18 0.39 0.37 0.37 0.23
## PA5  0.32 0.39  0.43  0.31  0.26 0.41 1.00 0.24 0.34 0.42 0.21 0.28
## PA6  0.29 0.48  0.22  0.17  0.14 0.18 0.24 1.00 0.32 0.20 0.11 0.24
## PA4  0.45 0.43  0.61  0.43  0.32 0.39 0.34 0.32 1.00 0.45 0.50 0.44
## PA8  0.39 0.34  0.53  0.50  0.18 0.37 0.42 0.20 0.45 1.00 0.42 0.49
## PA9  0.32 0.12  0.35  0.25  0.42 0.37 0.21 0.11 0.50 0.42 1.00 0.25
## PA11 0.41 0.43  0.55  0.48  0.01 0.23 0.28 0.24 0.44 0.49 0.25 1.00
## 
## Mean item complexity =  1.9
## Test of the hypothesis that 12 factors are sufficient.
## 
## The degrees of freedom for the null model are  1176  and the objective function was  37.19 with Chi Square of  4976.71
## The degrees of freedom for the model are 654  and the objective function was  4.54 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic number of observations is  152 with the empirical chi square  170.17  with prob <  1 
## The total number of observations was  152  with Likelihood Chi Square =  571.24  with prob <  0.99 
## 
## Tucker Lewis Index of factoring reliability =  1.042
## RMSEA index =  0  and the 90 % confidence intervals are  0 NA
## BIC =  -2714.37
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 PA1  PA3 PA12  PA7  PA2
## Correlation of scores with factors             0.99 0.96 0.93 0.95 0.91
## Multiple R square of scores with factors       0.97 0.92 0.87 0.90 0.82
## Minimum correlation of possible factor scores  0.94 0.84 0.73 0.81 0.65
##                                                PA10  PA5  PA6  PA4  PA8
## Correlation of scores with factors             0.95 0.95 0.97 0.92 0.92
## Multiple R square of scores with factors       0.90 0.89 0.94 0.85 0.85
## Minimum correlation of possible factor scores  0.79 0.79 0.88 0.70 0.69
##                                                 PA9 PA11
## Correlation of scores with factors             0.90 0.86
## Multiple R square of scores with factors       0.81 0.75
## Minimum correlation of possible factor scores  0.63 0.49

SIS分析

# load the package
library(psych);library(ggplot2);library(reshape2);library(Hmisc)

#creating correlation matrix
SIS <- read.table("SIS.txt", header=T)
SI <- matrix(unlist(SIS), ncol = 59)
SIR <- cor(SI)
write.table(SIR, file = "SISR.txt", sep = " ", row.names = FALSE, col.names = T)

# MSA(2) and bartlett test
KMO(SIR) # Overall MSA =  0.92
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = SIR)
## Overall MSA =  0.92
## MSA for each item = 
##  [1] 0.94 0.93 0.91 0.94 0.87 0.88 0.90 0.86 0.91 0.85 0.91 0.93 0.85 0.92
## [15] 0.92 0.86 0.75 0.87 0.76 0.79 0.89 0.87 0.86 0.85 0.87 0.87 0.87 0.94
## [29] 0.93 0.93 0.96 0.91 0.75 0.73 0.95 0.94 0.95 0.87 0.94 0.95 0.96 0.96
## [43] 0.96 0.92 0.92 0.96 0.94 0.95 0.93 0.96 0.95 0.94 0.95 0.93 0.96 0.94
## [57] 0.91 0.93 0.95
cortest.bartlett(SIR, n = 263) # chisq=14138.33 p.value = 0  df= 1711
## $chisq
## [1] 14138.33
## 
## $p.value
## [1] 0
## 
## $df
## [1] 1711
# numbers of factor
eigen(SIR)$values[eigen(SIR)$values >1] # 11
##  [1] 19.736353  7.159490  3.290884  2.420427  2.360258  1.983587  1.512754
##  [8]  1.343568  1.324690  1.055971  1.002273
PA50 <- fa.parallel(SIR,263, fa ="pc",quant=.5) #6

## Parallel analysis suggests that the number of factors =  NA  and the number of components =  6
PA99 <- fa.parallel(SIR,263, fa ="pc",quant=.99) #6

## Parallel analysis suggests that the number of factors =  NA  and the number of components =  6
# fa analysis : rotate :Promax
pam2 <- fa(SIR,nfactors = 6,n.obs = 263, rotate = "Promax",fm  =  "pa")
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A loading greater than abs(1) was detected. Examine the loadings
## carefully.
print(pam2)
## Factor Analysis using method =  pa
## Call: fa(r = SIR, nfactors = 6, n.obs = 263, rotate = "Promax", fm = "pa")
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##      PA1   PA3   PA2   PA6   PA5   PA4   h2   u2 com
## 1   0.71 -0.17 -0.02  0.16  0.14  0.07 0.60 0.40 1.3
## 2   0.79 -0.17  0.01  0.11  0.12  0.08 0.68 0.32 1.2
## 3   0.37  0.14  0.02  0.20  0.09  0.01 0.44 0.56 2.0
## 4   0.45  0.12  0.04  0.18  0.05  0.02 0.48 0.52 1.5
## 5  -0.05  0.07  0.47  0.40 -0.11 -0.14 0.54 0.46 2.4
## 6   0.01  0.08  0.56  0.36 -0.20 -0.17 0.67 0.33 2.3
## 7   0.15  0.10  0.43  0.37 -0.26 -0.09 0.60 0.40 3.2
## 8  -0.04  0.18  0.40  0.20 -0.23  0.14 0.40 0.60 3.0
## 9   0.02  0.11  0.50  0.38 -0.18 -0.09 0.62 0.38 2.4
## 10 -0.04  0.08  0.43  0.49 -0.17 -0.19 0.63 0.37 2.6
## 11 -0.08  0.10  0.38  0.46  0.01 -0.11 0.51 0.49 2.3
## 12 -0.08 -0.04 -0.09  0.66  0.32  0.08 0.49 0.51 1.6
## 13 -0.11 -0.26  0.14  0.63  0.18  0.20 0.46 0.54 2.0
## 14 -0.05  0.11  0.04  0.41  0.36 -0.07 0.39 0.61 2.3
## 15 -0.09 -0.13 -0.03  0.61  0.20  0.14 0.35 0.65 1.5
## 16 -0.24 -0.04 -0.06  0.68  0.28  0.05 0.40 0.60 1.7
## 17 -0.27  0.17  0.10 -0.33  0.07 -0.03 0.16 0.84 2.8
## 18 -0.16 -0.15  0.00  0.65  0.27  0.01 0.37 0.63 1.6
## 19 -0.14  0.19  0.20 -0.55  0.11 -0.18 0.25 0.75 2.0
## 20  0.00  0.08  0.10 -0.50 -0.10 -0.10 0.22 0.78 1.3
## 21  0.01 -0.04  0.68  0.00  0.11  0.03 0.49 0.51 1.1
## 22  0.06 -0.04  0.76 -0.03  0.07  0.10 0.62 0.38 1.1
## 23  0.03 -0.05  0.81 -0.03  0.05  0.05 0.65 0.35 1.0
## 24  0.14 -0.19  0.74 -0.21  0.13  0.06 0.49 0.51 1.5
## 25 -0.07 -0.08  0.79 -0.01  0.25 -0.02 0.64 0.36 1.2
## 26  0.11 -0.13  0.75 -0.11  0.14  0.18 0.63 0.37 1.3
## 27 -0.14  0.09  0.58  0.01  0.12  0.20 0.47 0.53 1.5
## 28  0.81 -0.11  0.04  0.00 -0.02 -0.03 0.54 0.46 1.0
## 29  0.33  0.51 -0.05  0.03 -0.02  0.07 0.62 0.38 1.8
## 30  0.41  0.52 -0.08 -0.01  0.04  0.07 0.76 0.24 2.0
## 31  0.60  0.27 -0.04  0.01 -0.01  0.06 0.66 0.34 1.4
## 32 -0.05  0.45  0.05 -0.03 -0.07  0.53 0.53 0.47 2.0
## 33  0.08  0.03  0.06  0.10 -0.17  0.90 0.84 0.16 1.1
## 34  0.02  0.01  0.05  0.15 -0.18  0.91 0.84 0.16 1.1
## 35  0.49  0.43 -0.04 -0.02  0.00 -0.02 0.67 0.33 2.0
## 36  0.38  0.44 -0.06  0.08  0.02  0.06 0.66 0.34 2.1
## 37  0.64  0.27 -0.10  0.01  0.04  0.00 0.75 0.25 1.4
## 38 -0.11  0.56  0.01  0.08 -0.01  0.12 0.33 0.67 1.2
## 39 -0.14  0.92  0.04  0.02  0.02  0.00 0.74 0.26 1.1
## 40 -0.08  0.96 -0.07 -0.02  0.06 -0.03 0.82 0.18 1.0
## 41 -0.04  0.90  0.02 -0.11 -0.04  0.15 0.74 0.26 1.1
## 42  0.07  0.89 -0.03 -0.08  0.03 -0.05 0.82 0.18 1.0
## 43  0.39  0.49 -0.04 -0.06  0.11 -0.08 0.66 0.34 2.1
## 44 -0.10  0.96 -0.01 -0.16  0.14 -0.01 0.77 0.23 1.1
## 45 -0.08  0.83  0.01 -0.08  0.21 -0.05 0.68 0.32 1.2
## 46 -0.01  0.81  0.00  0.01  0.15 -0.01 0.76 0.24 1.1
## 47  0.97 -0.06  0.03 -0.11  0.01  0.02 0.79 0.21 1.0
## 48  0.97 -0.05  0.04 -0.10  0.04  0.01 0.84 0.16 1.0
## 49  1.00 -0.06  0.06 -0.13  0.05  0.01 0.87 0.13 1.1
## 50  1.00 -0.04  0.04 -0.15  0.03  0.00 0.87 0.13 1.1
## 51  0.93 -0.06 -0.01 -0.05  0.09  0.00 0.83 0.17 1.0
## 52  0.42 -0.10  0.10  0.02  0.53 -0.14 0.56 0.44 2.3
## 53  0.11  0.12  0.10  0.16  0.61 -0.12 0.59 0.41 1.4
## 54 -0.08  0.16  0.11  0.18  0.44  0.00 0.34 0.66 1.8
## 55  0.28  0.21  0.01 -0.05  0.46 -0.12 0.52 0.48 2.3
## 56  0.00  0.07  0.07  0.27  0.52 -0.04 0.46 0.54 1.6
## 57  0.00  0.06 -0.03  0.18  0.57  0.00 0.42 0.58 1.2
## 58  0.06  0.15 -0.06  0.21  0.55 -0.05 0.51 0.49 1.5
## 59  0.17  0.15  0.05  0.06  0.57 -0.12 0.56 0.44 1.5
## 
##                        PA1  PA3  PA2  PA6  PA5  PA4
## SS loadings           9.48 8.34 5.80 4.64 3.97 2.37
## Proportion Var        0.16 0.14 0.10 0.08 0.07 0.04
## Cumulative Var        0.16 0.30 0.40 0.48 0.55 0.59
## Proportion Explained  0.27 0.24 0.17 0.13 0.11 0.07
## Cumulative Proportion 0.27 0.51 0.68 0.82 0.93 1.00
## 
##  With factor correlations of 
##      PA1  PA3  PA2  PA6  PA5  PA4
## PA1 1.00 0.66 0.10 0.50 0.46 0.16
## PA3 0.66 1.00 0.17 0.51 0.35 0.25
## PA2 0.10 0.17 1.00 0.45 0.04 0.23
## PA6 0.50 0.51 0.45 1.00 0.17 0.11
## PA5 0.46 0.35 0.04 0.17 1.00 0.31
## PA4 0.16 0.25 0.23 0.11 0.31 1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 6 factors are sufficient.
## 
## The degrees of freedom for the null model are  1711  and the objective function was  58.54 with Chi Square of  14138.33
## The degrees of freedom for the model are 1372  and the objective function was  15.4 
## 
## The root mean square of the residuals (RMSR) is  0.04 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  263 with the empirical chi square  1381.78  with prob <  0.42 
## The total number of observations was  263  with Likelihood Chi Square =  3657.95  with prob <  5.3e-207 
## 
## Tucker Lewis Index of factoring reliability =  0.766
## RMSEA index =  0.08  and the 90 % confidence intervals are  0.076 0.081
## BIC =  -3987.04
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                 PA1  PA3  PA2  PA6  PA5
## Correlation of scores with factors             0.99 0.98 0.97 0.95 0.93
## Multiple R square of scores with factors       0.97 0.97 0.93 0.90 0.87
## Minimum correlation of possible factor scores  0.95 0.94 0.86 0.80 0.74
##                                                 PA4
## Correlation of scores with factors             0.96
## Multiple R square of scores with factors       0.91
## Minimum correlation of possible factor scores  0.83
#理論建議的12個因素
pam3 <- fa(SIR,nfactors = 8,n.obs = 263, rotate = "Promax",fm  =  "pa")
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A loading greater than abs(1) was detected. Examine the loadings
## carefully.
print(pam3)
## Factor Analysis using method =  pa
## Call: fa(r = SIR, nfactors = 8, n.obs = 263, rotate = "Promax", fm = "pa")
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##      PA1   PA3   PA2   PA8   PA5   PA6   PA4   PA7   h2    u2 com
## 1   0.46 -0.13  0.02 -0.08  0.09  0.05  0.01  0.53 0.73 0.272 2.2
## 2   0.59 -0.12  0.05 -0.08  0.07  0.05  0.03  0.41 0.74 0.259 2.0
## 3  -0.01  0.19 -0.03  0.04  0.07 -0.04 -0.09  0.82 0.82 0.179 1.2
## 4   0.10  0.14 -0.03  0.09  0.06 -0.07 -0.05  0.74 0.77 0.229 1.2
## 5  -0.08 -0.05  0.06  0.73  0.07  0.01 -0.04  0.03 0.58 0.418 1.1
## 6   0.00  0.01  0.18  0.73 -0.10  0.02 -0.11  0.04 0.67 0.330 1.2
## 7   0.16  0.00  0.05  0.73 -0.13  0.03 -0.01 -0.03 0.62 0.378 1.2
## 8  -0.02  0.15  0.20  0.39 -0.18  0.04  0.15 -0.03 0.40 0.599 2.8
## 9  -0.02 -0.05  0.04  0.82  0.06 -0.06  0.03  0.05 0.69 0.311 1.0
## 10 -0.07 -0.10 -0.09  0.93  0.09 -0.01 -0.04  0.03 0.73 0.272 1.1
## 11 -0.05  0.04  0.09  0.55  0.08  0.19 -0.05 -0.05 0.52 0.475 1.4
## 12  0.01  0.06 -0.02 -0.05  0.10  0.72  0.01 -0.09 0.55 0.452 1.1
## 13 -0.14 -0.16  0.15  0.04  0.03  0.56  0.12  0.13 0.48 0.523 1.7
## 14  0.08  0.22  0.15 -0.09  0.12  0.55 -0.15 -0.17 0.47 0.532 2.1
## 15  0.01 -0.02  0.04 -0.04 -0.01  0.68  0.06 -0.11 0.42 0.583 1.1
## 16 -0.18  0.03 -0.04  0.06  0.13  0.63  0.01 -0.04 0.42 0.581 1.3
## 17 -0.17  0.12  0.13 -0.09  0.12 -0.22  0.02 -0.25 0.18 0.821 4.8
## 18 -0.09 -0.14 -0.07  0.18  0.20  0.54  0.01 -0.09 0.38 0.621 1.9
## 19 -0.12  0.03  0.10  0.06  0.35 -0.59 -0.05 -0.18 0.33 0.666 2.1
## 20  0.04 -0.03  0.04  0.04  0.07 -0.47  0.00 -0.18 0.26 0.744 1.4
## 21 -0.08 -0.06  0.54  0.23  0.14 -0.15  0.04  0.14 0.51 0.492 2.0
## 22  0.08  0.10  0.82 -0.02 -0.15  0.07 -0.02  0.03 0.68 0.319 1.1
## 23  0.09  0.06  0.80  0.09 -0.13  0.05 -0.04 -0.07 0.69 0.307 1.1
## 24  0.18 -0.10  0.79 -0.07 -0.03 -0.07  0.00 -0.08 0.52 0.485 1.2
## 25 -0.02  0.01  0.79  0.03  0.08  0.06 -0.08 -0.06 0.66 0.337 1.1
## 26  0.10 -0.06  0.75 -0.01  0.04 -0.05  0.12  0.02 0.63 0.367 1.1
## 27 -0.17  0.13  0.56  0.01  0.05  0.01  0.14  0.07 0.48 0.522 1.5
## 28  0.84 -0.11  0.02  0.08 -0.05  0.04 -0.02 -0.06 0.57 0.434 1.1
## 29  0.41  0.55  0.01 -0.03 -0.14  0.15  0.03 -0.10 0.66 0.345 2.3
## 30  0.44  0.48 -0.09  0.03  0.05  0.02  0.09 -0.05 0.77 0.228 2.2
## 31  0.63  0.22 -0.07  0.08  0.00  0.02  0.08 -0.07 0.67 0.326 1.4
## 32 -0.12  0.36  0.02 -0.03  0.08 -0.11  0.55  0.09 0.55 0.451 2.0
## 33  0.08 -0.09  0.03 -0.07  0.02  0.04  0.98 -0.08 0.91 0.093 1.1
## 34  0.02 -0.12  0.01 -0.04  0.03  0.07  0.99 -0.07 0.92 0.081 1.1
## 35  0.54  0.34 -0.14  0.17  0.06 -0.05  0.04 -0.11 0.71 0.295 2.3
## 36  0.39  0.37 -0.13  0.13  0.07  0.03  0.10 -0.03 0.67 0.330 2.7
## 37  0.65  0.19 -0.17  0.12  0.11 -0.03  0.05 -0.03 0.77 0.229 1.5
## 38 -0.13  0.58  0.03 -0.01 -0.07  0.08  0.06  0.10 0.34 0.660 1.3
## 39 -0.14  0.96  0.05  0.02 -0.08  0.05 -0.06  0.08 0.75 0.246 1.1
## 40 -0.08  0.97 -0.04 -0.01 -0.02  0.01 -0.08  0.08 0.83 0.173 1.0
## 41 -0.06  0.95  0.09 -0.11 -0.15 -0.02  0.06  0.09 0.76 0.238 1.1
## 42  0.08  0.87 -0.04  0.04  0.00 -0.06 -0.06  0.03 0.82 0.183 1.1
## 43  0.35  0.44 -0.07  0.05  0.13 -0.08 -0.07  0.09 0.66 0.341 2.4
## 44 -0.06  0.96  0.06 -0.11  0.05 -0.04 -0.05 -0.03 0.78 0.219 1.1
## 45 -0.08  0.82  0.05 -0.07  0.15 -0.03 -0.07  0.04 0.69 0.314 1.1
## 46  0.03  0.79  0.01  0.00  0.09  0.05 -0.03 -0.02 0.76 0.240 1.0
## 47  0.92 -0.07  0.05 -0.01  0.00 -0.07  0.02  0.07 0.79 0.208 1.0
## 48  0.96 -0.05  0.07 -0.02  0.00 -0.03  0.01  0.00 0.85 0.154 1.0
## 49  0.97 -0.08  0.07 -0.01  0.04 -0.08  0.02  0.02 0.87 0.131 1.0
## 50  1.01 -0.02  0.10 -0.06 -0.04 -0.04 -0.01 -0.01 0.88 0.115 1.0
## 51  0.94 -0.04  0.05 -0.07  0.00  0.06 -0.02 -0.03 0.85 0.150 1.0
## 52  0.43 -0.10  0.18 -0.16  0.45  0.11 -0.13 -0.03 0.56 0.435 3.0
## 53  0.07  0.05  0.08 -0.03  0.62  0.10 -0.06  0.04 0.60 0.400 1.2
## 54 -0.09  0.12  0.10 -0.03  0.44  0.14  0.03  0.02 0.34 0.658 1.6
## 55  0.24  0.16  0.04 -0.11  0.47 -0.03 -0.08  0.04 0.52 0.477 2.0
## 56 -0.03 -0.05 -0.03  0.10  0.64  0.12  0.06  0.01 0.50 0.504 1.2
## 57 -0.05 -0.10 -0.11  0.02  0.77  0.04  0.12 -0.02 0.50 0.499 1.2
## 58 -0.01  0.06 -0.09 -0.02  0.63  0.11  0.02  0.07 0.54 0.461 1.2
## 59  0.07 -0.03 -0.07  0.08  0.80 -0.12  0.02  0.07 0.65 0.347 1.1
## 
##                        PA1  PA3  PA2  PA8  PA5  PA6  PA4  PA7
## SS loadings           8.75 7.90 4.27 4.04 3.98 3.25 2.43 2.34
## Proportion Var        0.15 0.13 0.07 0.07 0.07 0.06 0.04 0.04
## Cumulative Var        0.15 0.28 0.35 0.42 0.49 0.55 0.59 0.63
## Proportion Explained  0.24 0.21 0.12 0.11 0.11 0.09 0.07 0.06
## Cumulative Proportion 0.24 0.45 0.57 0.68 0.78 0.87 0.94 1.00
## 
##  With factor correlations of 
##      PA1  PA3  PA2  PA8  PA5  PA6  PA4  PA7
## PA1 1.00 0.64 0.03 0.24 0.61 0.43 0.21 0.51
## PA3 0.64 1.00 0.08 0.33 0.57 0.40 0.38 0.41
## PA2 0.03 0.08 1.00 0.55 0.20 0.37 0.35 0.21
## PA8 0.24 0.33 0.55 1.00 0.22 0.53 0.30 0.30
## PA5 0.61 0.57 0.20 0.22 1.00 0.49 0.19 0.40
## PA6 0.43 0.40 0.37 0.53 0.49 1.00 0.29 0.45
## PA4 0.21 0.38 0.35 0.30 0.19 0.29 1.00 0.27
## PA7 0.51 0.41 0.21 0.30 0.40 0.45 0.27 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 8 factors are sufficient.
## 
## The degrees of freedom for the null model are  1711  and the objective function was  58.54 with Chi Square of  14138.33
## The degrees of freedom for the model are 1267  and the objective function was  12.22 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  263 with the empirical chi square  851.85  with prob <  1 
## The total number of observations was  263  with Likelihood Chi Square =  2886.59  with prob <  8.9e-128 
## 
## Tucker Lewis Index of factoring reliability =  0.819
## RMSEA index =  0.07  and the 90 % confidence intervals are  0.066 0.071
## BIC =  -4173.33
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                 PA1  PA3  PA2  PA8  PA5
## Correlation of scores with factors             0.99 0.99 0.96 0.96 0.95
## Multiple R square of scores with factors       0.98 0.97 0.92 0.93 0.90
## Minimum correlation of possible factor scores  0.95 0.94 0.85 0.85 0.80
##                                                 PA6  PA4  PA7
## Correlation of scores with factors             0.93 0.98 0.95
## Multiple R square of scores with factors       0.87 0.96 0.90
## Minimum correlation of possible factor scores  0.74 0.92 0.79