SSQOL分析
library(psych);library(ggplot2);library(reshape2);library(Hmisc)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
##
## describe
## The following objects are masked from 'package:base':
##
## format.pval, round.POSIXt, trunc.POSIXt, units
#creating correlation matrix
SSQOL <- read.table("SSQOL.txt", header=T)
S <- matrix(unlist(SSQOL), ncol = 49)
SR <- cor(S)
write.table(SR, file = "SR.txt", sep = " ", row.names = FALSE, col.names = T)
# MSA(2) and bartlett test
KMO(SR) # Overall MSA = 0.91
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = SR)
## Overall MSA = 0.91
## MSA for each item =
## [1] 0.95 0.93 0.94 0.95 0.96 0.89 0.79 0.79 0.86 0.86 0.89 0.91 0.83 0.95
## [15] 0.94 0.94 0.96 0.92 0.93 0.93 0.92 0.93 0.92 0.94 0.91 0.93 0.95 0.93
## [29] 0.82 0.79 0.86 0.80 0.91 0.90 0.89 0.93 0.90 0.89 0.93 0.88 0.94 0.93
## [43] 0.90 0.92 0.92 0.88 0.87 0.89 0.91
cortest.bartlett(SR, n = 263) # chisq=9104.343 p.value = 0 df=1176
## $chisq
## [1] 9104.343
##
## $p.value
## [1] 0
##
## $df
## [1] 1176
# numbers of factor
eigen(SR)$values[eigen(SR)$values >1] # 10
## [1] 15.771425 4.598951 3.475467 2.012855 1.624200 1.553807 1.382814
## [8] 1.290160 1.151761 1.008695
PA50 <- fa.parallel(SR,263, fa ="pc",quant=.5) #4
## Parallel analysis suggests that the number of factors = NA and the number of components = 4
PA99 <- fa.parallel(SR,263, fa ="pc",quant=.99) #4
## Parallel analysis suggests that the number of factors = NA and the number of components = 4
# fa analysis : rotate :Promax
#建議的4個因素
pam4 <- fa(SR,nfactors = 4,n.obs = 263, rotate = "Promax",fm = "pa")
print(pam4)
## Factor Analysis using method = pa
## Call: fa(r = SR, nfactors = 4, n.obs = 263, rotate = "Promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA3 PA4 PA2 h2 u2 com
## 1 0.58 0.07 0.32 -0.17 0.58 0.42 1.8
## 2 0.23 0.31 0.05 0.11 0.31 0.69 2.2
## 3 0.71 -0.01 0.19 -0.09 0.62 0.38 1.2
## 4 0.83 -0.16 0.19 -0.01 0.77 0.23 1.2
## 5 0.86 -0.03 -0.07 0.04 0.68 0.32 1.0
## 6 0.23 0.44 -0.07 -0.08 0.27 0.73 1.6
## 7 0.07 0.65 -0.09 0.01 0.42 0.58 1.1
## 8 0.09 0.60 -0.06 0.00 0.37 0.63 1.1
## 9 -0.11 0.76 0.10 -0.06 0.55 0.45 1.1
## 10 -0.08 0.81 0.08 -0.07 0.63 0.37 1.1
## 11 -0.04 0.84 -0.09 -0.03 0.61 0.39 1.0
## 12 -0.17 0.80 -0.03 0.00 0.53 0.47 1.1
## 13 -0.14 0.75 -0.06 0.01 0.47 0.53 1.1
## 14 0.81 -0.05 -0.05 0.11 0.65 0.35 1.0
## 15 0.77 0.03 -0.02 0.07 0.64 0.36 1.0
## 16 0.82 -0.11 -0.07 0.14 0.63 0.37 1.1
## 17 0.87 -0.08 -0.23 0.25 0.68 0.32 1.3
## 18 0.88 0.04 -0.29 0.19 0.69 0.31 1.3
## 19 0.92 -0.01 -0.31 0.19 0.72 0.28 1.3
## 20 0.87 -0.13 0.16 -0.07 0.79 0.21 1.1
## 21 0.73 -0.06 0.10 -0.02 0.57 0.43 1.1
## 22 0.51 -0.04 0.24 -0.01 0.42 0.58 1.5
## 23 0.30 0.39 0.05 -0.08 0.34 0.66 2.0
## 24 0.73 0.05 0.16 -0.15 0.64 0.36 1.2
## 25 0.59 0.13 0.18 -0.13 0.52 0.48 1.4
## 26 0.62 0.14 0.22 -0.21 0.58 0.42 1.6
## 27 0.61 0.09 0.16 -0.05 0.55 0.45 1.2
## 28 0.02 0.11 0.14 0.47 0.39 0.61 1.3
## 29 -0.05 0.25 -0.01 0.47 0.35 0.65 1.6
## 30 -0.05 0.18 -0.02 0.45 0.27 0.73 1.3
## 31 0.03 0.07 0.28 0.23 0.25 0.75 2.1
## 32 0.01 0.00 0.20 0.29 0.19 0.81 1.8
## 33 -0.02 -0.08 0.41 0.22 0.27 0.73 1.7
## 34 -0.11 0.01 0.36 0.31 0.30 0.70 2.2
## 35 0.00 0.01 0.54 0.07 0.35 0.65 1.0
## 36 0.01 0.02 0.68 0.01 0.49 0.51 1.0
## 37 0.16 -0.16 0.65 0.04 0.50 0.50 1.2
## 38 -0.02 -0.05 0.68 0.08 0.49 0.51 1.0
## 39 -0.01 0.01 0.68 0.00 0.46 0.54 1.0
## 40 -0.08 0.05 0.64 -0.12 0.32 0.68 1.1
## 41 -0.09 0.04 0.72 0.07 0.54 0.46 1.1
## 42 -0.04 -0.02 0.25 0.52 0.44 0.56 1.4
## 43 -0.07 -0.03 0.37 0.34 0.34 0.66 2.1
## 44 -0.11 0.15 0.29 0.40 0.42 0.58 2.3
## 45 0.08 0.05 0.22 0.45 0.45 0.55 1.5
## 46 0.04 0.03 -0.06 0.49 0.23 0.77 1.0
## 47 0.05 -0.09 -0.10 0.80 0.53 0.47 1.1
## 48 0.15 -0.12 -0.05 0.70 0.48 0.52 1.2
## 49 0.10 -0.10 0.00 0.77 0.59 0.41 1.1
##
## PA1 PA3 PA4 PA2
## SS loadings 10.26 4.50 4.85 4.30
## Proportion Var 0.21 0.09 0.10 0.09
## Cumulative Var 0.21 0.30 0.40 0.49
## Proportion Explained 0.43 0.19 0.20 0.18
## Cumulative Proportion 0.43 0.62 0.82 1.00
##
## With factor correlations of
## PA1 PA3 PA4 PA2
## PA1 1.00 0.45 0.55 0.35
## PA3 0.45 1.00 0.46 0.40
## PA4 0.55 0.46 1.00 0.58
## PA2 0.35 0.40 0.58 1.00
##
## Mean item complexity = 1.3
## Test of the hypothesis that 4 factors are sufficient.
##
## The degrees of freedom for the null model are 1176 and the objective function was 37.19 with Chi Square of 9104.34
## The degrees of freedom for the model are 986 and the objective function was 11.38
##
## The root mean square of the residuals (RMSR) is 0.05
## The df corrected root mean square of the residuals is 0.06
##
## The harmonic number of observations is 263 with the empirical chi square 1654.85 with prob < 1.1e-36
## The total number of observations was 263 with Likelihood Chi Square = 2755.71 with prob < 5.8e-167
##
## Tucker Lewis Index of factoring reliability = 0.73
## RMSEA index = 0.083 and the 90 % confidence intervals are 0.078 0.084
## BIC = -2738.43
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
## PA1 PA3 PA4 PA2
## Correlation of scores with factors 0.98 0.95 0.95 0.94
## Multiple R square of scores with factors 0.97 0.91 0.91 0.89
## Minimum correlation of possible factor scores 0.94 0.82 0.81 0.78
#理論建議的12個因素
pam12 <- fa(SR,nfactors = 12,n.obs = 152, rotate = "Promax",fm = "pa")
## In factor.stats, I could not find the RMSEA upper bound . Sorry about that
print(pam12)
## Factor Analysis using method = pa
## Call: fa(r = SR, nfactors = 12, n.obs = 152, rotate = "Promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA3 PA12 PA7 PA2 PA10 PA5 PA6 PA4 PA8 PA9 PA11
## 1 0.40 0.03 0.32 0.09 -0.07 -0.09 -0.02 -0.04 0.06 0.14 0.02 -0.01
## 2 0.18 0.15 0.11 0.01 0.06 0.00 0.19 0.02 0.16 -0.02 -0.18 0.11
## 3 0.49 0.03 0.01 0.29 -0.07 0.00 -0.04 -0.14 -0.01 0.05 0.05 0.23
## 4 0.66 -0.12 0.05 0.16 -0.05 0.02 -0.01 -0.13 0.07 0.02 0.04 0.19
## 5 0.78 -0.02 -0.06 0.09 -0.03 -0.02 0.02 -0.01 -0.03 -0.02 0.04 0.12
## 6 0.09 0.01 0.08 0.01 -0.16 0.00 0.03 0.49 -0.02 0.00 -0.03 0.15
## 7 -0.06 0.02 0.09 0.12 0.03 0.01 0.00 0.94 -0.06 -0.02 -0.04 -0.03
## 8 -0.03 -0.01 0.07 0.02 -0.11 0.03 0.04 0.85 0.02 0.07 -0.02 -0.03
## 9 -0.06 0.72 -0.04 0.08 0.01 0.04 -0.06 0.11 0.08 -0.03 0.06 -0.10
## 10 -0.01 0.84 -0.05 0.10 0.10 0.00 -0.11 0.03 0.06 -0.01 0.01 -0.08
## 11 0.07 0.99 -0.05 -0.02 -0.01 0.04 -0.08 -0.01 -0.14 -0.03 0.10 -0.06
## 12 -0.08 0.77 -0.03 -0.05 0.01 -0.05 0.14 -0.05 0.03 0.00 -0.07 0.07
## 13 -0.06 0.77 -0.02 -0.09 -0.02 -0.04 0.10 -0.07 -0.07 0.02 0.00 0.09
## 14 0.95 -0.02 -0.11 -0.16 0.02 -0.06 -0.01 0.01 0.18 -0.02 0.02 0.01
## 15 0.85 0.00 0.17 -0.24 0.05 -0.09 -0.05 0.09 0.01 0.05 0.02 0.03
## 16 0.92 -0.01 -0.13 -0.04 0.08 0.00 -0.10 0.03 -0.03 -0.10 0.17 0.06
## 17 0.89 -0.01 -0.19 -0.03 -0.04 0.14 0.00 0.03 -0.10 -0.05 0.12 0.10
## 18 0.97 0.06 -0.02 -0.02 0.18 -0.05 0.02 0.04 -0.04 0.00 -0.16 -0.17
## 19 0.98 0.08 0.00 -0.08 0.03 0.07 0.00 -0.04 0.01 0.03 -0.18 -0.19
## 20 0.68 -0.04 0.42 0.13 -0.01 -0.03 0.00 -0.07 -0.14 0.07 0.06 -0.23
## 21 0.51 0.02 0.29 0.19 -0.19 0.11 0.16 -0.05 -0.06 0.00 0.11 -0.37
## 22 0.30 -0.04 0.45 0.14 -0.02 0.17 0.02 -0.04 0.23 -0.09 -0.13 -0.31
## 23 0.16 0.19 0.14 0.03 -0.15 0.08 -0.02 0.20 0.08 0.03 -0.07 0.04
## 24 0.50 -0.02 -0.16 0.46 -0.04 -0.07 -0.03 0.02 0.02 0.09 0.05 0.10
## 25 0.24 0.00 -0.15 0.87 0.16 0.00 -0.03 0.07 0.01 -0.06 -0.06 -0.01
## 26 0.27 0.02 -0.17 0.90 0.15 -0.08 -0.06 0.07 0.02 -0.06 -0.02 -0.02
## 27 0.39 0.01 0.17 0.31 0.03 -0.05 0.06 0.05 -0.13 -0.03 0.09 0.08
## 28 0.06 0.02 -0.04 0.03 0.19 0.02 0.45 0.04 -0.07 0.12 0.19 0.01
## 29 -0.06 -0.04 -0.10 -0.03 0.01 -0.02 0.91 0.05 0.01 0.03 0.02 0.12
## 30 -0.01 -0.02 -0.02 -0.09 0.03 -0.05 0.90 -0.02 0.01 -0.06 0.06 0.01
## 31 0.01 -0.04 -0.07 -0.07 0.09 0.01 -0.07 0.08 0.06 0.85 -0.05 0.00
## 32 0.02 0.00 -0.13 -0.08 0.04 0.04 0.04 -0.02 -0.04 0.93 0.00 -0.15
## 33 -0.10 -0.03 0.37 -0.02 0.26 0.14 -0.11 -0.04 -0.01 0.09 0.06 0.12
## 34 -0.05 -0.08 -0.01 0.18 0.39 -0.02 0.12 0.13 0.14 0.08 0.13 -0.12
## 35 -0.04 -0.10 0.93 -0.25 0.36 -0.12 -0.03 0.12 -0.05 -0.11 0.13 0.01
## 36 -0.01 0.06 0.68 -0.17 0.24 -0.03 -0.16 0.05 0.03 -0.05 0.30 0.00
## 37 0.13 0.01 0.18 -0.03 -0.08 0.01 0.06 -0.03 0.02 -0.02 0.71 -0.03
## 38 0.02 0.13 0.08 -0.01 0.00 0.03 0.08 -0.06 0.18 -0.02 0.61 -0.10
## 39 0.03 -0.03 0.00 -0.04 0.03 -0.03 0.00 -0.11 0.72 0.13 0.02 0.04
## 40 -0.06 -0.08 -0.05 0.07 -0.03 -0.03 0.00 0.04 0.85 -0.08 0.04 -0.11
## 41 -0.05 0.03 0.03 -0.03 0.04 0.05 0.02 -0.01 0.49 0.01 0.30 0.07
## 42 0.03 0.08 0.13 0.16 0.69 0.04 -0.01 -0.12 -0.17 0.16 -0.01 0.10
## 43 -0.01 -0.02 0.02 0.22 0.54 0.07 -0.11 0.07 0.10 0.00 0.10 -0.01
## 44 -0.02 0.09 0.12 -0.01 0.54 0.02 0.01 -0.05 0.15 0.00 -0.12 0.32
## 45 0.12 -0.01 0.32 0.10 0.71 -0.04 0.10 -0.04 -0.03 -0.06 -0.18 0.17
## 46 -0.01 -0.08 -0.02 0.00 0.23 0.26 0.16 -0.01 -0.07 -0.15 -0.08 0.51
## 47 -0.03 0.03 -0.07 -0.06 0.09 0.86 -0.08 0.04 -0.05 0.07 -0.01 0.06
## 48 0.00 -0.01 -0.15 0.04 -0.02 0.85 -0.03 -0.03 0.02 -0.05 0.03 0.21
## 49 0.00 -0.03 0.08 -0.12 0.03 0.78 0.05 0.05 0.01 0.04 0.03 0.01
## h2 u2 com
## 1 0.63 0.375 2.6
## 2 0.37 0.634 6.5
## 3 0.72 0.284 2.5
## 4 0.81 0.192 1.5
## 5 0.70 0.304 1.1
## 6 0.41 0.589 1.6
## 7 0.91 0.088 1.1
## 8 0.77 0.231 1.1
## 9 0.59 0.414 1.2
## 10 0.72 0.283 1.1
## 11 0.78 0.220 1.1
## 12 0.61 0.391 1.2
## 13 0.55 0.446 1.1
## 14 0.78 0.222 1.2
## 15 0.73 0.269 1.3
## 16 0.76 0.237 1.2
## 17 0.74 0.263 1.2
## 18 0.80 0.201 1.2
## 19 0.80 0.200 1.2
## 20 0.86 0.141 2.2
## 21 0.74 0.256 3.9
## 22 0.61 0.389 4.3
## 23 0.38 0.620 6.0
## 24 0.70 0.297 2.4
## 25 0.74 0.264 1.3
## 26 0.80 0.200 1.4
## 27 0.59 0.406 3.0
## 28 0.49 0.506 2.1
## 29 0.80 0.205 1.1
## 30 0.71 0.287 1.1
## 31 0.64 0.365 1.1
## 32 0.66 0.337 1.1
## 33 0.31 0.690 3.1
## 34 0.38 0.615 3.1
## 35 0.54 0.456 1.7
## 36 0.58 0.418 2.0
## 37 0.68 0.321 1.3
## 38 0.63 0.374 1.4
## 39 0.60 0.401 1.1
## 40 0.55 0.448 1.1
## 41 0.59 0.413 1.8
## 42 0.58 0.415 1.6
## 43 0.46 0.541 1.7
## 44 0.53 0.466 2.1
## 45 0.61 0.386 1.9
## 46 0.36 0.639 2.6
## 47 0.74 0.261 1.1
## 48 0.71 0.289 1.2
## 49 0.74 0.263 1.1
##
## PA1 PA3 PA12 PA7 PA2 PA10 PA5 PA6 PA4 PA8
## SS loadings 8.73 3.39 2.19 2.48 2.30 2.34 2.02 2.11 1.86 1.56
## Proportion Var 0.18 0.07 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.03
## Cumulative Var 0.18 0.25 0.29 0.34 0.39 0.44 0.48 0.52 0.56 0.59
## Proportion Explained 0.28 0.11 0.07 0.08 0.07 0.07 0.06 0.07 0.06 0.05
## Cumulative Proportion 0.28 0.38 0.45 0.53 0.61 0.68 0.74 0.81 0.87 0.92
## PA9 PA11
## SS loadings 1.69 0.82
## Proportion Var 0.03 0.02
## Cumulative Var 0.63 0.64
## Proportion Explained 0.05 0.03
## Cumulative Proportion 0.97 1.00
##
## With factor correlations of
## PA1 PA3 PA12 PA7 PA2 PA10 PA5 PA6 PA4 PA8 PA9 PA11
## PA1 1.00 0.34 0.58 0.57 0.07 0.37 0.32 0.29 0.45 0.39 0.32 0.41
## PA3 0.34 1.00 0.43 0.36 0.12 0.21 0.39 0.48 0.43 0.34 0.12 0.43
## PA12 0.58 0.43 1.00 0.75 -0.06 0.38 0.43 0.22 0.61 0.53 0.35 0.55
## PA7 0.57 0.36 0.75 1.00 -0.19 0.27 0.31 0.17 0.43 0.50 0.25 0.48
## PA2 0.07 0.12 -0.06 -0.19 1.00 0.43 0.26 0.14 0.32 0.18 0.42 0.01
## PA10 0.37 0.21 0.38 0.27 0.43 1.00 0.41 0.18 0.39 0.37 0.37 0.23
## PA5 0.32 0.39 0.43 0.31 0.26 0.41 1.00 0.24 0.34 0.42 0.21 0.28
## PA6 0.29 0.48 0.22 0.17 0.14 0.18 0.24 1.00 0.32 0.20 0.11 0.24
## PA4 0.45 0.43 0.61 0.43 0.32 0.39 0.34 0.32 1.00 0.45 0.50 0.44
## PA8 0.39 0.34 0.53 0.50 0.18 0.37 0.42 0.20 0.45 1.00 0.42 0.49
## PA9 0.32 0.12 0.35 0.25 0.42 0.37 0.21 0.11 0.50 0.42 1.00 0.25
## PA11 0.41 0.43 0.55 0.48 0.01 0.23 0.28 0.24 0.44 0.49 0.25 1.00
##
## Mean item complexity = 1.9
## Test of the hypothesis that 12 factors are sufficient.
##
## The degrees of freedom for the null model are 1176 and the objective function was 37.19 with Chi Square of 4976.71
## The degrees of freedom for the model are 654 and the objective function was 4.54
##
## The root mean square of the residuals (RMSR) is 0.02
## The df corrected root mean square of the residuals is 0.03
##
## The harmonic number of observations is 152 with the empirical chi square 170.17 with prob < 1
## The total number of observations was 152 with Likelihood Chi Square = 571.24 with prob < 0.99
##
## Tucker Lewis Index of factoring reliability = 1.042
## RMSEA index = 0 and the 90 % confidence intervals are 0 NA
## BIC = -2714.37
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy
## PA1 PA3 PA12 PA7 PA2
## Correlation of scores with factors 0.99 0.96 0.93 0.95 0.91
## Multiple R square of scores with factors 0.97 0.92 0.87 0.90 0.82
## Minimum correlation of possible factor scores 0.94 0.84 0.73 0.81 0.65
## PA10 PA5 PA6 PA4 PA8
## Correlation of scores with factors 0.95 0.95 0.97 0.92 0.92
## Multiple R square of scores with factors 0.90 0.89 0.94 0.85 0.85
## Minimum correlation of possible factor scores 0.79 0.79 0.88 0.70 0.69
## PA9 PA11
## Correlation of scores with factors 0.90 0.86
## Multiple R square of scores with factors 0.81 0.75
## Minimum correlation of possible factor scores 0.63 0.49
SIS分析
# load the package
library(psych);library(ggplot2);library(reshape2);library(Hmisc)
#creating correlation matrix
SIS <- read.table("SIS.txt", header=T)
SI <- matrix(unlist(SIS), ncol = 59)
SIR <- cor(SI)
write.table(SIR, file = "SISR.txt", sep = " ", row.names = FALSE, col.names = T)
# MSA(2) and bartlett test
KMO(SIR) # Overall MSA = 0.92
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = SIR)
## Overall MSA = 0.92
## MSA for each item =
## [1] 0.94 0.93 0.91 0.94 0.87 0.88 0.90 0.86 0.91 0.85 0.91 0.93 0.85 0.92
## [15] 0.92 0.86 0.75 0.87 0.76 0.79 0.89 0.87 0.86 0.85 0.87 0.87 0.87 0.94
## [29] 0.93 0.93 0.96 0.91 0.75 0.73 0.95 0.94 0.95 0.87 0.94 0.95 0.96 0.96
## [43] 0.96 0.92 0.92 0.96 0.94 0.95 0.93 0.96 0.95 0.94 0.95 0.93 0.96 0.94
## [57] 0.91 0.93 0.95
cortest.bartlett(SIR, n = 263) # chisq=14138.33 p.value = 0 df= 1711
## $chisq
## [1] 14138.33
##
## $p.value
## [1] 0
##
## $df
## [1] 1711
# numbers of factor
eigen(SIR)$values[eigen(SIR)$values >1] # 11
## [1] 19.736353 7.159490 3.290884 2.420427 2.360258 1.983587 1.512754
## [8] 1.343568 1.324690 1.055971 1.002273
PA50 <- fa.parallel(SIR,263, fa ="pc",quant=.5) #6
## Parallel analysis suggests that the number of factors = NA and the number of components = 6
PA99 <- fa.parallel(SIR,263, fa ="pc",quant=.99) #6
## Parallel analysis suggests that the number of factors = NA and the number of components = 6
# fa analysis : rotate :Promax
pam2 <- fa(SIR,nfactors = 6,n.obs = 263, rotate = "Promax",fm = "pa")
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A loading greater than abs(1) was detected. Examine the loadings
## carefully.
print(pam2)
## Factor Analysis using method = pa
## Call: fa(r = SIR, nfactors = 6, n.obs = 263, rotate = "Promax", fm = "pa")
##
## Warning: A Heywood case was detected.
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA3 PA2 PA6 PA5 PA4 h2 u2 com
## 1 0.71 -0.17 -0.02 0.16 0.14 0.07 0.60 0.40 1.3
## 2 0.79 -0.17 0.01 0.11 0.12 0.08 0.68 0.32 1.2
## 3 0.37 0.14 0.02 0.20 0.09 0.01 0.44 0.56 2.0
## 4 0.45 0.12 0.04 0.18 0.05 0.02 0.48 0.52 1.5
## 5 -0.05 0.07 0.47 0.40 -0.11 -0.14 0.54 0.46 2.4
## 6 0.01 0.08 0.56 0.36 -0.20 -0.17 0.67 0.33 2.3
## 7 0.15 0.10 0.43 0.37 -0.26 -0.09 0.60 0.40 3.2
## 8 -0.04 0.18 0.40 0.20 -0.23 0.14 0.40 0.60 3.0
## 9 0.02 0.11 0.50 0.38 -0.18 -0.09 0.62 0.38 2.4
## 10 -0.04 0.08 0.43 0.49 -0.17 -0.19 0.63 0.37 2.6
## 11 -0.08 0.10 0.38 0.46 0.01 -0.11 0.51 0.49 2.3
## 12 -0.08 -0.04 -0.09 0.66 0.32 0.08 0.49 0.51 1.6
## 13 -0.11 -0.26 0.14 0.63 0.18 0.20 0.46 0.54 2.0
## 14 -0.05 0.11 0.04 0.41 0.36 -0.07 0.39 0.61 2.3
## 15 -0.09 -0.13 -0.03 0.61 0.20 0.14 0.35 0.65 1.5
## 16 -0.24 -0.04 -0.06 0.68 0.28 0.05 0.40 0.60 1.7
## 17 -0.27 0.17 0.10 -0.33 0.07 -0.03 0.16 0.84 2.8
## 18 -0.16 -0.15 0.00 0.65 0.27 0.01 0.37 0.63 1.6
## 19 -0.14 0.19 0.20 -0.55 0.11 -0.18 0.25 0.75 2.0
## 20 0.00 0.08 0.10 -0.50 -0.10 -0.10 0.22 0.78 1.3
## 21 0.01 -0.04 0.68 0.00 0.11 0.03 0.49 0.51 1.1
## 22 0.06 -0.04 0.76 -0.03 0.07 0.10 0.62 0.38 1.1
## 23 0.03 -0.05 0.81 -0.03 0.05 0.05 0.65 0.35 1.0
## 24 0.14 -0.19 0.74 -0.21 0.13 0.06 0.49 0.51 1.5
## 25 -0.07 -0.08 0.79 -0.01 0.25 -0.02 0.64 0.36 1.2
## 26 0.11 -0.13 0.75 -0.11 0.14 0.18 0.63 0.37 1.3
## 27 -0.14 0.09 0.58 0.01 0.12 0.20 0.47 0.53 1.5
## 28 0.81 -0.11 0.04 0.00 -0.02 -0.03 0.54 0.46 1.0
## 29 0.33 0.51 -0.05 0.03 -0.02 0.07 0.62 0.38 1.8
## 30 0.41 0.52 -0.08 -0.01 0.04 0.07 0.76 0.24 2.0
## 31 0.60 0.27 -0.04 0.01 -0.01 0.06 0.66 0.34 1.4
## 32 -0.05 0.45 0.05 -0.03 -0.07 0.53 0.53 0.47 2.0
## 33 0.08 0.03 0.06 0.10 -0.17 0.90 0.84 0.16 1.1
## 34 0.02 0.01 0.05 0.15 -0.18 0.91 0.84 0.16 1.1
## 35 0.49 0.43 -0.04 -0.02 0.00 -0.02 0.67 0.33 2.0
## 36 0.38 0.44 -0.06 0.08 0.02 0.06 0.66 0.34 2.1
## 37 0.64 0.27 -0.10 0.01 0.04 0.00 0.75 0.25 1.4
## 38 -0.11 0.56 0.01 0.08 -0.01 0.12 0.33 0.67 1.2
## 39 -0.14 0.92 0.04 0.02 0.02 0.00 0.74 0.26 1.1
## 40 -0.08 0.96 -0.07 -0.02 0.06 -0.03 0.82 0.18 1.0
## 41 -0.04 0.90 0.02 -0.11 -0.04 0.15 0.74 0.26 1.1
## 42 0.07 0.89 -0.03 -0.08 0.03 -0.05 0.82 0.18 1.0
## 43 0.39 0.49 -0.04 -0.06 0.11 -0.08 0.66 0.34 2.1
## 44 -0.10 0.96 -0.01 -0.16 0.14 -0.01 0.77 0.23 1.1
## 45 -0.08 0.83 0.01 -0.08 0.21 -0.05 0.68 0.32 1.2
## 46 -0.01 0.81 0.00 0.01 0.15 -0.01 0.76 0.24 1.1
## 47 0.97 -0.06 0.03 -0.11 0.01 0.02 0.79 0.21 1.0
## 48 0.97 -0.05 0.04 -0.10 0.04 0.01 0.84 0.16 1.0
## 49 1.00 -0.06 0.06 -0.13 0.05 0.01 0.87 0.13 1.1
## 50 1.00 -0.04 0.04 -0.15 0.03 0.00 0.87 0.13 1.1
## 51 0.93 -0.06 -0.01 -0.05 0.09 0.00 0.83 0.17 1.0
## 52 0.42 -0.10 0.10 0.02 0.53 -0.14 0.56 0.44 2.3
## 53 0.11 0.12 0.10 0.16 0.61 -0.12 0.59 0.41 1.4
## 54 -0.08 0.16 0.11 0.18 0.44 0.00 0.34 0.66 1.8
## 55 0.28 0.21 0.01 -0.05 0.46 -0.12 0.52 0.48 2.3
## 56 0.00 0.07 0.07 0.27 0.52 -0.04 0.46 0.54 1.6
## 57 0.00 0.06 -0.03 0.18 0.57 0.00 0.42 0.58 1.2
## 58 0.06 0.15 -0.06 0.21 0.55 -0.05 0.51 0.49 1.5
## 59 0.17 0.15 0.05 0.06 0.57 -0.12 0.56 0.44 1.5
##
## PA1 PA3 PA2 PA6 PA5 PA4
## SS loadings 9.48 8.34 5.80 4.64 3.97 2.37
## Proportion Var 0.16 0.14 0.10 0.08 0.07 0.04
## Cumulative Var 0.16 0.30 0.40 0.48 0.55 0.59
## Proportion Explained 0.27 0.24 0.17 0.13 0.11 0.07
## Cumulative Proportion 0.27 0.51 0.68 0.82 0.93 1.00
##
## With factor correlations of
## PA1 PA3 PA2 PA6 PA5 PA4
## PA1 1.00 0.66 0.10 0.50 0.46 0.16
## PA3 0.66 1.00 0.17 0.51 0.35 0.25
## PA2 0.10 0.17 1.00 0.45 0.04 0.23
## PA6 0.50 0.51 0.45 1.00 0.17 0.11
## PA5 0.46 0.35 0.04 0.17 1.00 0.31
## PA4 0.16 0.25 0.23 0.11 0.31 1.00
##
## Mean item complexity = 1.6
## Test of the hypothesis that 6 factors are sufficient.
##
## The degrees of freedom for the null model are 1711 and the objective function was 58.54 with Chi Square of 14138.33
## The degrees of freedom for the model are 1372 and the objective function was 15.4
##
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.04
##
## The harmonic number of observations is 263 with the empirical chi square 1381.78 with prob < 0.42
## The total number of observations was 263 with Likelihood Chi Square = 3657.95 with prob < 5.3e-207
##
## Tucker Lewis Index of factoring reliability = 0.766
## RMSEA index = 0.08 and the 90 % confidence intervals are 0.076 0.081
## BIC = -3987.04
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
## PA1 PA3 PA2 PA6 PA5
## Correlation of scores with factors 0.99 0.98 0.97 0.95 0.93
## Multiple R square of scores with factors 0.97 0.97 0.93 0.90 0.87
## Minimum correlation of possible factor scores 0.95 0.94 0.86 0.80 0.74
## PA4
## Correlation of scores with factors 0.96
## Multiple R square of scores with factors 0.91
## Minimum correlation of possible factor scores 0.83
#理論建議的12個因素
pam3 <- fa(SIR,nfactors = 8,n.obs = 263, rotate = "Promax",fm = "pa")
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A loading greater than abs(1) was detected. Examine the loadings
## carefully.
print(pam3)
## Factor Analysis using method = pa
## Call: fa(r = SIR, nfactors = 8, n.obs = 263, rotate = "Promax", fm = "pa")
##
## Warning: A Heywood case was detected.
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA3 PA2 PA8 PA5 PA6 PA4 PA7 h2 u2 com
## 1 0.46 -0.13 0.02 -0.08 0.09 0.05 0.01 0.53 0.73 0.272 2.2
## 2 0.59 -0.12 0.05 -0.08 0.07 0.05 0.03 0.41 0.74 0.259 2.0
## 3 -0.01 0.19 -0.03 0.04 0.07 -0.04 -0.09 0.82 0.82 0.179 1.2
## 4 0.10 0.14 -0.03 0.09 0.06 -0.07 -0.05 0.74 0.77 0.229 1.2
## 5 -0.08 -0.05 0.06 0.73 0.07 0.01 -0.04 0.03 0.58 0.418 1.1
## 6 0.00 0.01 0.18 0.73 -0.10 0.02 -0.11 0.04 0.67 0.330 1.2
## 7 0.16 0.00 0.05 0.73 -0.13 0.03 -0.01 -0.03 0.62 0.378 1.2
## 8 -0.02 0.15 0.20 0.39 -0.18 0.04 0.15 -0.03 0.40 0.599 2.8
## 9 -0.02 -0.05 0.04 0.82 0.06 -0.06 0.03 0.05 0.69 0.311 1.0
## 10 -0.07 -0.10 -0.09 0.93 0.09 -0.01 -0.04 0.03 0.73 0.272 1.1
## 11 -0.05 0.04 0.09 0.55 0.08 0.19 -0.05 -0.05 0.52 0.475 1.4
## 12 0.01 0.06 -0.02 -0.05 0.10 0.72 0.01 -0.09 0.55 0.452 1.1
## 13 -0.14 -0.16 0.15 0.04 0.03 0.56 0.12 0.13 0.48 0.523 1.7
## 14 0.08 0.22 0.15 -0.09 0.12 0.55 -0.15 -0.17 0.47 0.532 2.1
## 15 0.01 -0.02 0.04 -0.04 -0.01 0.68 0.06 -0.11 0.42 0.583 1.1
## 16 -0.18 0.03 -0.04 0.06 0.13 0.63 0.01 -0.04 0.42 0.581 1.3
## 17 -0.17 0.12 0.13 -0.09 0.12 -0.22 0.02 -0.25 0.18 0.821 4.8
## 18 -0.09 -0.14 -0.07 0.18 0.20 0.54 0.01 -0.09 0.38 0.621 1.9
## 19 -0.12 0.03 0.10 0.06 0.35 -0.59 -0.05 -0.18 0.33 0.666 2.1
## 20 0.04 -0.03 0.04 0.04 0.07 -0.47 0.00 -0.18 0.26 0.744 1.4
## 21 -0.08 -0.06 0.54 0.23 0.14 -0.15 0.04 0.14 0.51 0.492 2.0
## 22 0.08 0.10 0.82 -0.02 -0.15 0.07 -0.02 0.03 0.68 0.319 1.1
## 23 0.09 0.06 0.80 0.09 -0.13 0.05 -0.04 -0.07 0.69 0.307 1.1
## 24 0.18 -0.10 0.79 -0.07 -0.03 -0.07 0.00 -0.08 0.52 0.485 1.2
## 25 -0.02 0.01 0.79 0.03 0.08 0.06 -0.08 -0.06 0.66 0.337 1.1
## 26 0.10 -0.06 0.75 -0.01 0.04 -0.05 0.12 0.02 0.63 0.367 1.1
## 27 -0.17 0.13 0.56 0.01 0.05 0.01 0.14 0.07 0.48 0.522 1.5
## 28 0.84 -0.11 0.02 0.08 -0.05 0.04 -0.02 -0.06 0.57 0.434 1.1
## 29 0.41 0.55 0.01 -0.03 -0.14 0.15 0.03 -0.10 0.66 0.345 2.3
## 30 0.44 0.48 -0.09 0.03 0.05 0.02 0.09 -0.05 0.77 0.228 2.2
## 31 0.63 0.22 -0.07 0.08 0.00 0.02 0.08 -0.07 0.67 0.326 1.4
## 32 -0.12 0.36 0.02 -0.03 0.08 -0.11 0.55 0.09 0.55 0.451 2.0
## 33 0.08 -0.09 0.03 -0.07 0.02 0.04 0.98 -0.08 0.91 0.093 1.1
## 34 0.02 -0.12 0.01 -0.04 0.03 0.07 0.99 -0.07 0.92 0.081 1.1
## 35 0.54 0.34 -0.14 0.17 0.06 -0.05 0.04 -0.11 0.71 0.295 2.3
## 36 0.39 0.37 -0.13 0.13 0.07 0.03 0.10 -0.03 0.67 0.330 2.7
## 37 0.65 0.19 -0.17 0.12 0.11 -0.03 0.05 -0.03 0.77 0.229 1.5
## 38 -0.13 0.58 0.03 -0.01 -0.07 0.08 0.06 0.10 0.34 0.660 1.3
## 39 -0.14 0.96 0.05 0.02 -0.08 0.05 -0.06 0.08 0.75 0.246 1.1
## 40 -0.08 0.97 -0.04 -0.01 -0.02 0.01 -0.08 0.08 0.83 0.173 1.0
## 41 -0.06 0.95 0.09 -0.11 -0.15 -0.02 0.06 0.09 0.76 0.238 1.1
## 42 0.08 0.87 -0.04 0.04 0.00 -0.06 -0.06 0.03 0.82 0.183 1.1
## 43 0.35 0.44 -0.07 0.05 0.13 -0.08 -0.07 0.09 0.66 0.341 2.4
## 44 -0.06 0.96 0.06 -0.11 0.05 -0.04 -0.05 -0.03 0.78 0.219 1.1
## 45 -0.08 0.82 0.05 -0.07 0.15 -0.03 -0.07 0.04 0.69 0.314 1.1
## 46 0.03 0.79 0.01 0.00 0.09 0.05 -0.03 -0.02 0.76 0.240 1.0
## 47 0.92 -0.07 0.05 -0.01 0.00 -0.07 0.02 0.07 0.79 0.208 1.0
## 48 0.96 -0.05 0.07 -0.02 0.00 -0.03 0.01 0.00 0.85 0.154 1.0
## 49 0.97 -0.08 0.07 -0.01 0.04 -0.08 0.02 0.02 0.87 0.131 1.0
## 50 1.01 -0.02 0.10 -0.06 -0.04 -0.04 -0.01 -0.01 0.88 0.115 1.0
## 51 0.94 -0.04 0.05 -0.07 0.00 0.06 -0.02 -0.03 0.85 0.150 1.0
## 52 0.43 -0.10 0.18 -0.16 0.45 0.11 -0.13 -0.03 0.56 0.435 3.0
## 53 0.07 0.05 0.08 -0.03 0.62 0.10 -0.06 0.04 0.60 0.400 1.2
## 54 -0.09 0.12 0.10 -0.03 0.44 0.14 0.03 0.02 0.34 0.658 1.6
## 55 0.24 0.16 0.04 -0.11 0.47 -0.03 -0.08 0.04 0.52 0.477 2.0
## 56 -0.03 -0.05 -0.03 0.10 0.64 0.12 0.06 0.01 0.50 0.504 1.2
## 57 -0.05 -0.10 -0.11 0.02 0.77 0.04 0.12 -0.02 0.50 0.499 1.2
## 58 -0.01 0.06 -0.09 -0.02 0.63 0.11 0.02 0.07 0.54 0.461 1.2
## 59 0.07 -0.03 -0.07 0.08 0.80 -0.12 0.02 0.07 0.65 0.347 1.1
##
## PA1 PA3 PA2 PA8 PA5 PA6 PA4 PA7
## SS loadings 8.75 7.90 4.27 4.04 3.98 3.25 2.43 2.34
## Proportion Var 0.15 0.13 0.07 0.07 0.07 0.06 0.04 0.04
## Cumulative Var 0.15 0.28 0.35 0.42 0.49 0.55 0.59 0.63
## Proportion Explained 0.24 0.21 0.12 0.11 0.11 0.09 0.07 0.06
## Cumulative Proportion 0.24 0.45 0.57 0.68 0.78 0.87 0.94 1.00
##
## With factor correlations of
## PA1 PA3 PA2 PA8 PA5 PA6 PA4 PA7
## PA1 1.00 0.64 0.03 0.24 0.61 0.43 0.21 0.51
## PA3 0.64 1.00 0.08 0.33 0.57 0.40 0.38 0.41
## PA2 0.03 0.08 1.00 0.55 0.20 0.37 0.35 0.21
## PA8 0.24 0.33 0.55 1.00 0.22 0.53 0.30 0.30
## PA5 0.61 0.57 0.20 0.22 1.00 0.49 0.19 0.40
## PA6 0.43 0.40 0.37 0.53 0.49 1.00 0.29 0.45
## PA4 0.21 0.38 0.35 0.30 0.19 0.29 1.00 0.27
## PA7 0.51 0.41 0.21 0.30 0.40 0.45 0.27 1.00
##
## Mean item complexity = 1.5
## Test of the hypothesis that 8 factors are sufficient.
##
## The degrees of freedom for the null model are 1711 and the objective function was 58.54 with Chi Square of 14138.33
## The degrees of freedom for the model are 1267 and the objective function was 12.22
##
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.04
##
## The harmonic number of observations is 263 with the empirical chi square 851.85 with prob < 1
## The total number of observations was 263 with Likelihood Chi Square = 2886.59 with prob < 8.9e-128
##
## Tucker Lewis Index of factoring reliability = 0.819
## RMSEA index = 0.07 and the 90 % confidence intervals are 0.066 0.071
## BIC = -4173.33
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
## PA1 PA3 PA2 PA8 PA5
## Correlation of scores with factors 0.99 0.99 0.96 0.96 0.95
## Multiple R square of scores with factors 0.98 0.97 0.92 0.93 0.90
## Minimum correlation of possible factor scores 0.95 0.94 0.85 0.85 0.80
## PA6 PA4 PA7
## Correlation of scores with factors 0.93 0.98 0.95
## Multiple R square of scores with factors 0.87 0.96 0.90
## Minimum correlation of possible factor scores 0.74 0.92 0.79