The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion upload your document to rpubs.com and share the link to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.anscombe
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
data=anscombe
fBasics() package!)mean(data$x1)
## [1] 9
var(data$x1)
## [1] 11
mean(data$x2)
## [1] 9
var(data$x2)
## [1] 11
mean(data$x3)
## [1] 9
var(data$x3)
## [1] 11
mean(data$x4)
## [1] 9
var(data$x4)
## [1] 11
mean(data$y1)
## [1] 7.500909
var(data$y1)
## [1] 4.127269
mean(data$y2)
## [1] 7.500909
var(data$y2)
## [1] 4.127629
mean(data$y3)
## [1] 7.5
var(data$y3)
## [1] 4.12262
mean(data$y4)
## [1] 7.500909
var(data$y4)
## [1] 4.123249
library('fBasics')
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
cor.test(data$x1,data$y1)
##
## Pearson's product-moment correlation
##
## data: data$x1 and data$y1
## t = 4.2415, df = 9, p-value = 0.00217
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4243912 0.9506933
## sample estimates:
## cor
## 0.8164205
cor.test(data$x2,data$y2)
##
## Pearson's product-moment correlation
##
## data: data$x2 and data$y2
## t = 4.2386, df = 9, p-value = 0.002179
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4239389 0.9506402
## sample estimates:
## cor
## 0.8162365
cor.test(data$x3,data$y3)
##
## Pearson's product-moment correlation
##
## data: data$x3 and data$y3
## t = 4.2394, df = 9, p-value = 0.002176
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4240623 0.9506547
## sample estimates:
## cor
## 0.8162867
cor.test(data$x4,data$y4)
##
## Pearson's product-moment correlation
##
## data: data$x4 and data$y4
## t = 4.243, df = 9, p-value = 0.002165
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4246394 0.9507224
## sample estimates:
## cor
## 0.8165214
plot(data$x1,data$y1)
plot(data$x2,data$y2)
plot(data$x3,data$y3)
plot(data$x4,data$y4)
par(mfrow=c(2,2))
plot(data$x1,data$y1,pch=19)
plot(data$x2,data$y2,pch=19)
plot(data$x3,data$y3,pch=19)
plot(data$x4,data$y4,pch=19)
lm() function.fit1<-lm(data$y1~data$x1)
fit2<-lm(data$y2~data$x2)
fit3<-lm(data$y3~data$x3)
fit4<-lm(data$y4~data$x4)
par(mfrow=c(2,2))
plot(data$x1,data$y1,pch=19)
abline(fit1)
plot(data$x2,data$y2,pch=19)
abline(fit2)
plot(data$x3,data$y3,pch=19)
abline(fit3)
plot(data$x4,data$y4,pch=19)
abline(fit4)
anova(fit1)
Analysis of Variance Table
Response: data\(y1 Df Sum Sq Mean Sq F value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit2)
Analysis of Variance Table
Response: data\(y2 Df Sum Sq Mean Sq F value Pr(>F) data\)x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit3)
Analysis of Variance Table
Response: data\(y3 Df Sum Sq Mean Sq F value Pr(>F) data\)x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit4)
Analysis of Variance Table
Response: data\(y4 Df Sum Sq Mean Sq F value Pr(>F) data\)x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
When we explore the relationship between independent variable and dependent variable, it does give us a lot information from data itself, i.e. coefficient, etc. Data visualization makes this relationship more direct and visual. In question 6, it is much easier to tell which data pair has linear relationship and which data pair has strongest linear relationship. Relating this to business world, business moves very fast and leadership group wants to see more visual report than plain data, which makes the effect of data visualization more significant.